[1] A. Beitollahi, P. Azhdari, Multivalued ( ; ; ; )-contractin in probabilistic metric space,
Fixed Point Theory and Applications, (2012), 2012:10.
[2] S. S. Chang, B. S. Lee, Y. J. Cho, Y. Q. Chen, S. M. Kang and J. S. Jung, Generalized
contraction mapping principle and diferential equations in probabilistic metric spaces, Pro-
ceedings of the American Mathematical Society, 124(8) (1996), 2367{2376.
[3] L. Ciric, Some new results for Banach contractions and Edelestein contractive mappings on
fuzzy metric spaces, Chaos, Solutons and Fractals, 42 (2009), 146{154.
[4] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy sets and systems,
64 (1994), 395{399.
[5] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy sets and systems, 27 (1988), 385{389.
[6] V. Gregori and A. Sapena, On xed point theorems in fuzzy metric spaces, Fuzzy Sets and
Systems, 125 (2002), 245{252.
[7] O. Hadzic and E. Pap, A xed point theorem for multivalued mappings in probabilistic metric
spaces and an application in fuzzy metric spaces, Fuzzy Sets and Systems, 127 (2002), 333{
344.
[8] O. Hadzic, E. Pap and M. Budincevic, Countable extension of triangular norms and their ap-
plications to the xed point theory in probabilistic metric spaces, Kybernetika, 38(3) (2002),
363-381.
[9] O. Hadzic and E. Pap, Fixed point theorems for single-valued and multivalued mappings in
probabilistic metric spaces, Atti Sem. Mat. Fiz. Modena LI, (2003), 377-395.
[10] O. Hadzic and E. Pap, Fixed point theory in probabilistic metric space, Kluwer Academic
Publishers, Dordrecht, 2001.
[11] O. Hadzic and E. Pap, New classes of probabilistic contractions and applications to random
operators, in: Y.J. Cho, J.K. Kim, S.M. Kong (Eds.), Fixed Point Theory and Application,
Vol. 4, Nova Science Publishers, Hauppauge, New York, (2003), 97-119.
[12] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984),
215-229.
[13] Y. Liu and Zh. Li, Coincidence point theorems in probabilistic and fuzzy metric spaces, Fuzzy
Sets and Systems, 158 (2007), 58-70.
[14] D. Mihet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems,
144 (2004), 431-439.
[15] D. Mihet, A class of contractions in fuzzy metric spaces, Fuzzy Sets and Systems, 161 (2010),
1131-1137.
[16] D. Mihet, Multivalued generalizations of probabilistic contractions, J. Mathematic Analysis
Application, 304 (2005), 464{472.
[17] J. Rodrguez-Lpez and S. Romaguera, The Hausdor fuzzy metric on compact sets, Fuzzy
Sets and Systems, 147 (2004), 273{283.
[18] R. Saadati and S. M. Vaezpour, Some results on fuzzy Banach spaces, J. Application Math-
ematic and Computing, 17(1-2) (2005), 475-484.
[19] B. Schweizer, A. Sklar, Statistical metric spaces, Pac. J. Math., 10 (1960), 313{334.
[20] S. L. Singh and S. N. Mishra, Coincidence and xed points of nonself hybrid contractions, J.
Math. Anal. Appl., 256 (2001), 486{497.
[21] P. Tirado, Contraction mappings in fuzzy quasi-metric spaces and [0; 1]-fuzzy posets, Fixed
Point Theory, 13(1) (2012), 273{283.
[22] T. Zikic-Dosenovic, A multivalued generalization of Hick's C-contraction, Fuzzy Sets and
Systems, 151(3) (2005), 549-562.
[23] T. Zikic-Dosenovic, Fixed point theorems for contractive mappings in Menger probabilistic
metric spaces, Proceeding of IPMU'08, June 22{27, (2008), 1497{1504.