[1] J. Abonyi, Fuzzy Model Identication for Control, Birkhauser, Boston, 2003.
[2] K. Debs, Multio-bjective optimization Using Evolutionary Algorithms, John Wiley and Son
Ltd, 2001.
[3] B. L. R. De Moor and ed., DaISy: Database for the Identication of Systems,
Department of Electrical Engineering, ESAT/SISTA, K. U. Leuven, Belgium, URL:
http://www.esat.kuleuven.ac.be/sista/daisy/.
[4] V. De Oliveira, Semantic constraints for membership function optimization, IEEE Trans.
SMC-A, 29(1) (1999), 128-138.
[5] M. Eftekhari, S. D. Katebi, M. Karimi and A. H. Jahanmiri, Eliciting transparent fuzzy model
using dierential evolution, Applied Soft Computing, 8 (2008), 466-476.
[6] M. Eftekhari and S. D. Katebi, Extracting compact fuzzy rules for nonlinear system modeling
using subtractive clustering, GA and unscented lter, Applied Mathematical Modelling, 32
(2008), 2634-2651.
[7] B. Feil, J. Abonyi, J. Madar, S. Nemeth and P. A rva, Identication and analysis of MIMO
systems based on clustering algorithm, Acta Agraria Kaposvariensis, 8(3) (2004), 191-203.
[8] C. M. Fonseca and P. J. Fleming, Multi-objective optimization and multiple constraint han-
dling with evolutionary algorithms-part I: application example, IEEE Trans. Syst. Man and
Cybernetics, 28(1) (1998), 26-37.
[9] C. M. Fonseca and P. J. Fleming, Multi-objective optimization and multiple constraint han-
dling with evolutionary algorithms-part II: a unied formulation, IEEE Trans. Syst. Man and
Cybernetics, 28(1) (1998), 38-47.
[10] M. J. Gacto, R. Alcala and F. Herrera, Integration of an Index to Preserve the Semantic
Interpretability in the Multiobjective Evolutionary Rule Selection and Tuning of Linguistic
Fuzzy Systems, IEEE Transactions on Fuzzy Systems, 8(3) (2010), 515-531.
[11] S. Y. Ho, H. M. Chen, S. J. Ho and T. K. Cehn, Design of accurate classiers with a compact
fuzzy rule base using an evolutionary scatter partition of feature space, IEEE Tans. Systems,
Man and Cybernetics, Part B: Cybernetics, 34(2) (2004), 1031-1044.
[12] W. H. Ho, J. H. Chou and C. Y. Guo, Parameter identication of chaotic systems using
improved dierential evolution algorithm, Nonlinear Dynamics, 61 (2010), 29-41.
[13] A. Homaifar and E. McCormick, Simultaneous design of membership functions and rule sets
for fuzzy controllers using genetic algorithms, IEEE Trans. Fuzzy Syst., 3 (1995), 129-139.
[14] H. Ishibuchi, Multiobjective genetic fuzzy systems: Review and future research directions,
Proc. of IEEE InternationalConference on Fuzzy Systems, London, UK, July 23-26, (2007)
913-918.
[15] C. Z. Janikow, A knowledge intensive genetic algorithm for supervised learning, Machine
Learning, 13 (1993), 198-228.
[16] L. Ljung, System identication toolbox: user's guide, The MathWorks, 2004.
[17] S. Medasani, J. Kim and R. Krishnapuram, An overview of membership function generation
techniques for pattern recognition, Int. J. Approx. Reasoning, 19(3-4) (1998), 391-417.
[18] O. Nelles, Nonlinear System Identication, Springer-Verlag, Berlin Heidelberg, 2001.
[19] A. Riid and E. Rustern, Interpretability improvement of fuzzy systems: reducing the number
of unique singletons in zeroth order Takagi-Sugeno systems, Proceedings of (2010) IEEE
International Conference on Fuzzy Systems, Barcelona, Spain, (2010), 2013-2018.
[20] K. Rodriguez-vazquez, Multiobjective evolutionary algorithms in non-linear system identi-
cation. PhD thesis, Department of Automatic Control and Systems Engineering, The Uni-
versity of Sheeld, 1999.
[21] R. Storn and K. Price, Dierential evolution-a simple and ecient adaptive scheme or global
optimization over continuous spaces, technical report TR-95-012, International Computer
Science Institute, Berkley, 1995.
[22] R. Storn and K. Price, Dierential evolution a simple and ecient heuristic for global opti-
mization over continuous spaces, J. Global Optim. 11 (1997), 341-359.
[23] J. T. Tsai, J. H. Chou and T. K. Liu, Tuning the structure and parameters of a neural
network by using hybrid Taguchi-genetic algorithm, IEEE Trans. on Neural Networks, 17
(2006), 69-80.
[24] H. Wang, S. Kwong, Y. Jin, W. Wei, and K. F. Man, Multi-objective hierarchical genetic
algorithm for interpretable fuzzy rule-based knowledge extraction, Fuzzy Sets and Systems,
149 (2005), 149-186.
[25] H.Wang, S. Kwong, Y. Jin, W.Wei and K. F. Man, Agent-based evolutionary approach for in-
terpretable rule-based knowledge extraction, IEEE Trans. on Systems, Man and Cybernetics-
Part C, 35 (2005), 143-155.
[26] S. M. Zhou and J. Q. Gan, Low-level interpretability and high-level interpretability: a unied
view of data-driven interpretable fuzzy system modeling, Fuzzy Sets and Systems, 159 (2008),
3091-3131.
[27] S. M. Zhou and J. Q. Gan, Extracting Takagi-Sugeno fuzzy rules with interpretable sub-
models via regularization of linguistic modiers, IEEE Transactions on Knowledge and Data
Engineering, 21(8) (2009), 1191-1204.