[1] R. Balbes and Ph. Dwinger, Distributive lattices, University of Missouri Press, 1974.
[2] W. J. Blok and D. Pigozzi, Algebraizable logics, Memoirs of the American Mathematical
Society, Amer. Math. Soc, Providence, 396 (1989).
[3] K. Blount and C. Tsinakis, The structure of residuated lattices, Internat. J. Algebra Comput.,
13(4) (2003), 437-461.
[4] D. Busneag and D. Piciu, Some types of lters in residuated lattices, Soft Comput., 18(5)
(2014), 825-837.
[5] D. Busneag and D. Piciu, A new approach for classication of lters in residuated lattices,
Fuzzy Sets and Systems, 260 (2015), 121-130.
[6] D. Busneag, D. Piciu and L. Holdon, Some properties of ideals in Stonean Residuated Lattices,
J. Multi-Valued Logic & Soft Computing, 24(5-6) (2015), 529-546.
[7] D. Busneag, D. Piciu and J. Paralescu, Divisible and semi-divisible residuated lattices, Ann.
St. Univ. Al. I. Cuza, Iasi, Matematica (S.N.), doi:10.2478/aicu-2013-0012, (2013), 14-45.
[8] C. C. Chang, Algebraic analysis of many-valued logic, Trans. Amer. Math. Soc., 88 (1958),
467-490.
[9] L. Chun-hui and X. Luo-shan, On -Ideals and lattices of -Ideals in regular residuated
lattices, In B.-Y. Cao et al. (Eds.): Quantitative Logic and Soft Computing (2010), AISC
82, 425-434.
[10] R. Cignoli, I. M. L. D'Ottaviano and D. Mundici, Algebraic foundations of many-valued
reasoning, Trends in Logic-Studia Logica Library 7, Dordrecht: Kluwer Academic Publishers
(2000).
[11] R. P. Dilworth, Non-commutative residuated lattices, Trans. Amer. Math. Soc., 46 (1939),
426-444.
[12] P. Hajek, Metamathematics of fuzzy logic, Trends in Logic-Studia Logica Library 4, Dordrecht:
Kluwer Academic Publishers (1998).
[13] M. Haveshki, A. Borumand Saeid and E. Eslami, Some types of lters in BL-algebras, Soft
Comput., 10 (2010), 657-664.
[14] U. Hohle, Commutative residuated monoids, In: U. Hohle, P. Klement (eds), Non-classical
Logics and Their Aplications to Fuzzy Subsets, Kluwer Academic Publishers, (1995).
[15] P. M. Idziak, Lattice operations in BCK-algebras, Math. Japonica, 29 (1984), 839-846.
[16] A. Iorgulescu, Algebras of logic as BCK algebras, Ed. ASE, Bucuresti, 2008.
[17] M. Kondo and W. A. Dudek, Filter theory of BL-algebras, Soft Comput., 12 (2008), 419-423.
[18] W. Krull, Axiomatische Begrundung der allgemeinen Ideal theorie, Sitzungsberichte der
physikalisch medizinischen Societad der Erlangen, 56 (1924), 47-63.
[19] L. Lianzhen and L. Kaitai, Boolean lters and positive implicative lters of residuated lattices,
Inf. Sciences, 177 (2007), 5725-5738.
[20] X. Ma, J. Zhan and W. A. Dudek, Some kinds of (; _ q)-fuzzy lters of BL-algebras,
Computers and Mathematics with Applications, 58 (2009), 248-256.
[21] M. Okada and K. Terui, The nite model property for various fragments of intuitionistic
linear logic, Journal of Symbolic Logic, 64 (1999), 790-802.
[22] J. Pavelka, On fuzzy logic II. Enriched residuated lattices and semantics of propositional
calculi, Zeitschrift fur mathematische Logik und Grundlagen der Mathematik, 25 (1979),
119-134.
[23] D. Piciu, Algebras of fuzzy logic, Ed. Universitaria, Craiova (2007).
[24] E. Turunen, Boolean deductive systems of BL algebras, Arch. Math. Logic, 40 (2001).
[25] E. Turunen, Mathematics behind fuzzy logic, Physica-Verlag (1999).
[26] B. Van Gasse, G. Deschrijver, C. Cornelis and E. E. Kerre, Filters of residuated lattices and
triangle algebras, Inf. Sciences, 180(16) (2010), 3006-3020.
[27] M. Ward, Residuated distributive lattices, Duke Mathematcal Journal, 6 (1940), 641-651.
[28] M. Ward and R. P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc., 45 (1939), 335-
354.
[29] M. A. Zhenming, MTL -lters and their characterization in residuated lattices, Computer
Engineering and Applications, 48(20) (2012), 64-66.
[30] Y. Zhu and Y. Xu, On lter theory of residuated lattices, Inf. Sciences, 180 (2010), 3614-3632.