On metric spaces induced by fuzzy metric spaces

Document Type : Research Paper

Authors

College of Mathematics and Physics,, Chongqing University of Posts and Telecommunications,, Nanan, Chongqing, 400065, P. R. China

Abstract

For a class of fuzzy metric spaces (in the sense of George and Veeramani) with an H-type t-norm,  we present a method to construct a metric on a  fuzzy metric space. The induced metric space shares many important
 properties with the given fuzzy metric space.  Specifically, they generate the same topology, and have the
 same completeness. Our results can give the constructive proofs to some problems for fuzzy metric spaces
  in the  literature, which are shown by   examples in this paper.

Keywords


[1] T. Altun and D. Mihet, Ordered non-archimedean fuzzy metric spaces and some xed point
results, Fixed Point Theory Appl., Article ID 782680, 2010, 11 pages.
[2] D. Burago, Y. Burago and S. Ivanov, A course in metric geometry, American Mathematical
Society, Ann Arbor, 2001.
[3] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set Syst., 64(2)
(1994), 395{399.
[4] A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Set
Syst., 90(2) (1997), 365{368.
[5] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Set Syst., 27(2) (1989), 385{389.
[6] V. Gregori, A. Lopez-Crevillen, S. Morillas and A. Sapena, On convergence in fuzzy metric
spaces, Topol. Appl., 156 (18) (2009), 3002{3006.
[7] V. Gregori, J. Mi~nana and S. Morillas, Some questions in fuzzy metric spaces, Fuzzy Set
Syst., 204(1) (2012), 71{85.
[8] V. Gregori, J. Mi~nana and S. Morillas, A note on local bases and convergence in fuzzy metric
spaces, Topol. Appl., 163 (15) (2014), 142{148.
[9] V. Gregori, S. Morillas and A. Sapena, On a class of completable fuzzy metric spaces, Fuzzy
Set Syst., 161(5) (2010), 2193{2205.
[10] V. Gregori, S. Morillas and A. Sapena, Examples of fuzzy metrics and applications, Fuzzy
Set Syst., 107(1) (2011), 95{111.
[11] V. Gregori and S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Set Syst.,
115(3) (2000), 485{489.
[12] V. Gregori and S. Romaguera, On completion of fuzzy metric spaces, Fuzzy Set Syst., 130
(3) (2002), 399{404.
[13] V. Gregori and S. Romaguera, Characterizing completable fuzzy metric spaces, Fuzzy Set
Syst., 144 (3) (2004), 411{420.
[14] V. Gregori and A. Sapena, On xed point theorems in fuzzy metric spaces, Fuzzy Set Syst.,
125 (2) (2002), 245{252.
[15] O. Hadzic and E. Pap, Fixed point theory in probabilistic metric spaces, Kluwer Academic
Publishers, Dordrecht, 2001.
[16] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Set Syst., 12(1) (1984), 215{229.
[17] E. Klement, R. Mesiar and E. Pap, Triangular norms, Kluwer, Dordrecht (2000).
[18] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11(2)
(1975), 326{334.
[19] C. Li, On some results of metrics induced by a fuzzy ultrametric, Filomat, 27(6) (2013),
1133{1140.
[20] K. Menger, Statistical metrics, Proc. Natl. Acad. Sci. USA, 28(1) (1942), 535{537.
[21] D. Mihet, Fuzzy -contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Set
Syst., 159(4) (2008), 739{744.
[22] E. Pap, O. Hadzio and R. Mesiar, A xed point theorem in probabilistic metric spaces and
applications in fuzzy set theory, J. Math. Anal. Appl., 202 (2) (1996), 433{449.
[23] D. Qiu and W. Zhang, The strongest t-norm for fuzzy metric spaces, Kybernetika,49 (1)
(2013), 141{148.
[24] D. Qiu, W. Zhang and C. Li, Extension of a class of decomposable measures using fuzzy
pseudometrics, Fuzzy Set Syst., 222(1) (2013), 33{44.
[25] V. Radu, Some suitable metrics on fuzzy metric spaces, Fixed Point Theory, 5 (2) (2004),
323{347.
[26] A. Razani, A contraction theorem in fuzzy metric spaces, Fixed Point Theory Appl., 3(1)
(2005), 257{265.
[27] W. Rudin, Functional analysis, McGraw-Hill, New York, 1973.
[28] A. Sapena, A contribution to the study of fuzzy metric spaces, Appl. Gen. Topol., 2(1) (2001),
63{76.
[29] P. Veeramani, Best approximation in fuzzy metric spaces, J. Fuzz. Math., 9(1) (2001), 75{80.
[30] L. A. Zadeh, Fuzzy sets,Inform Control., 8(2) (1965), 338{353.