[1] A. R. Arabpour and M. Tata, Estimating the parameters of a fuzzy linear regression model,
Iranian Journal of Fuzzy Systms, 5(2) (2008), 1-19.
[2] M. Are and S. M. Taheri, Least-squares regression based on Atanassov's intuitionistic fuzzy
inputs-outputs and Atanassov's intuitionistic fuzzy parameters, IEEE Trans. on Fuzzy Syst.,
23 (2015), 1142-1154.
[3] A. Bargiela, W. Pedrycz and T. Nakashima, Multiple regression with fuzzy data, Fuzzy Sets
Syst., 158 (2007), 2169-2188.
[4] A. Bisserier, R. Boukezzoula and S. Galichet, A revisited approach to linear fuzzy regression
using trapezoidal fuzzy intervals, Inf. Sci., 180 (2010), 3653-3673.
[5] J. Chachi and M. Roozbeh, A fuzzy robust regression approach applied to bed-
load transport data, Communications in Statistics-Simulation and Computation, DOI:
10.1080/03610918.2015.1010002, 2015.
[6] J. Chachi and S. M. Taheri, A least-absolutes approach to multiple fuzzy regression, in: Proc.
58th ISI Congress, Dublin, Ireland, CPS077-01, 2011.
[7] J. Chachi and S. M. Taheri, A least-absolutes regression model for imprecise response based
on the generalized Hausdor-metric, J. Uncertain Syst., 7 (2013), 265-276.
[8] J. Chachi, S. M. Taheri and N. R. Arghami, A hybrid fuzzy regression model and its appli-
cation in hydrology engineering, Applied Soft Comput., 25 (2014), 149{158.
[9] J. Chachi, S. M. Taheri and H. Rezaei Pazhand, Suspended load estimation using L1-Fuzzy
regression, L2-Fuzzy regression and MARS-Fuzzy regression models, Hydrological Sciences
J., 61(8) (2016), 1489-1502.
[10] J. Chachi, S. M. Taheri and R. H. Rezaei Pazhand, An interval-based approach to fuzzy
regression for fuzzy input-output data, in: Proc. IEEE Int. Conf. Fuzzy Syst., Taipei, Taiwan,
(2011), 2859-2863.
[11] S. P. Chen and J. F. Dang, A variable spread fuzzy linear regression model with higher
explanatory power and forecasting accuracy, Inf. Sci., 178 (2008), 3973-3988.
[12] R. Coppi, P. D'Urso, P. Giordani and A. Santoro, Least squares estimation of a linear re-
gression model with LR fuzzy response, Comp. Stat. Data Anal., 51 (2006), 267-286.
[13] P. D'Urso, Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data,
Comp. Stat. Data Anal., 42 (2003), 47-72.
[14] P. D'Urso and Gastaldi T., An orderwise polynomial regression procedure for fuzzy data,
Fuzzy Set Syst., 130 (2002), 1-19.
[15] P. D'Urso, R. Massari and A. Santoro, A class of fuzzy clusterwise regression models, Inf.
Sci., 180 (2010), 4737-4762.
[16] P. D'Urso, R. Massari and A. Santoro, Robust fuzzy regression analysis, Inf. Sci., 181 (2011),
4154-4174.
[17] P. D'Urso and A. Santoro, Fuzzy clusterwise regression analysis with symmetrical fuzzy output
variable, Comp. Stat. Data Anal., 51 (2006), 287-313.
[18] M. B. Ferraro, R. Coppi, G. Gonzalez Rodrguez and A. Colubi, A linear regression model
for imprecise response, Int. J. Approx. Reason., 51 (2010), 759-770.
[19] H. Hassanpour, H. R. Maleki and M. A. Yaghoobi, Fuzzy linear regression model with crisp
coecients: A programming approach, Iranian J. Fuzzy Syst., 7 (2010), 19-39.
[20] H. Hassanpour, H. R. Maleki and M. A. Yaghoobi, A goal programming approach to fuzzy
linear regression with fuzzy input-output data, Soft Comput., 15 (2011), 1569-1580.
[21] Y. C. Hu, Functional-link nets with genetic-algorithm-based learning for robust nonlinear
interval regression analysis, Neurocomputin, 72 (2009), 1808-1816.
[22] C. Kao and C. L. Chyu, A fuzzy linear regression model with better explanatory power, Fuzzy
Sets Syst., 126 (2002), 401-409.
[23] C. Kao and C. L. Chyu, Least-squares estimates in fuzzy regression analysis, European J.
Oper. Res., 148 (2003), 426-435.
[24] M. Kelkinnama and S. M. Taheri, Fuzzy least-absolutes regression using shape preserving
operations, Inf. Sci., 214 (2012), 105-120.
[25] B. Kim and R. R. Bishu, Evaluation of fuzzy linear regression models by comparison mem-
bership function, Fuzzy Sets Syst., 100 (1998), 343-352.
[26] K. S. Kula and A. Apaydin, Fuzzy robust regression analysis based on the ranking of fuzzy
sets, Int. J. Uncertain., Fuzziness Knowledge-Based Syst., 16 (2008), 663-681.
[27] J. Lu and R. Wang, An enhanced fuzzy linear regression model with more
exible spreads,
Fuzzy Sets Syst., 160 (2009), 2505-2523.
[28] M. H. Mashinchi, M. A. Orgun, M. Mashinchi and W. Pedrycz, A tabu-harmony search-based
approach to fuzzy linear regression, IEEE Trans. Fuzzy Syst., 19 (2011), 432-448.
[29] MATLAB, The Language of Technical Computing, The MathWorks Inc., MA, 2009.
[30] M. Modarres, E. Nasrabadi and M. M. Nasrabadi, Fuzzy linear regression analysis from the
point of view risk, Int. J. Uncertain., Fuzziness Knowledge-Based Syst., 12 (2004), 635-649.
[31] M. Modarres, E. Nasrabadi and M. M. Nasrabadi, Fuzzy linear regression with least squares
errors, Appl. Math. Comput., 163 (2005), 977-989.
[32] R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to Interval Analysis, Society for
Industrial and Applied Mathematics, Philadelphia, PA, 2009.
[33] M. Namdari, J. H. Yoon, A. Abadi, S. M. Taheri and S. H. Choi, Fuzzy logistic regression
with least absolute deviations estimators, Soft Comput., 19 (2015), 909-917.
[34] E. Nasrabadi and S. M. Hashemi, Robust fuzzy regression analysis using neural networks,
Int. J. Uncertain., Fuzziness Knowledge-Based Syst., 16 (2008), 579-598.
[35] E. Nasrabadi, S. M. Hashemi and M. Ghatee, An LP-based approach to outliers detection
in fuzzy regression analysis, Int. J. Uncertain., Fuzziness Knowledge-Based Syst., 15 (2007),
441-456.
[36] M. M. Nasrabadi and E. Nasrabadi, A mathematical-programming approach to fuzzy linear
regression analysis, Appl. Math. Comput., 155 (2004), 873-881.
[37] M. M. Nasrabadi, E. Nasrabadi and A. R. Nasrabadi, Fuzzy linear regression analysis: a
multi-objective programming approach, Appl. Math. Comput., 163 (2005), 245-251.
[38] S. Pourahmad, S. M. T. Ayatollahi and S. M. Taheri, Fuzzy logistic regression: A new
possibilistic model and its application in clinical vague status, Iranian J. Fuzzy Syst., 8
(2011), 1-17.
[39] S. Pourahmad, S. M. T. Ayatollahi, S. M. Taheri and Z. Habib Agahi, Fuzzy logistic regression
based on the least squares approach with application in clinical studies, Comput. Math. Appl.,
62 (2011), 3353-3365.
[40] M. R. Rabiei, N. R. Arghami, S. M. Taheri and B. Sadeghpour Gildeh, Least-squares approach
to regression modeling in full interval-valued fuzzy environment, Soft Comput., 18 (2014),
2043-2059.
[41] M. Sakawa and H. Yano, Multiobjective fuzzy linear regression analysis for fuzzy input-output
data, Fuzzy Sets Syst., 157 (1992), 173-181.
[42] H. Shakouri and R. Nadimi, A novel fuzzy linear regression model based on a non-equality
possibility index and optimum uncertainty, Appl. Soft Comput., 9 (2009), 590-598.
[43] S. M. Taheri and M. Kelkinnama, Fuzzy linear regression based on least absolute deviations,
Irannian Journal of Fuzzy Systems, 9(1) (2012), 121-140.
[44] H. Tanaka, I. Hayashi and J. Watada, Possibilistic linear regression analysis for fuzzy data,
European J. Oper. Res., 40 (1989), 389-396.
[45] H. Tanaka, S. Vejima and K. Asai, Linear regression analysis with fuzzy model, IEEE Trans.
Syst., Man, Cybernetics, 12 (1982), 903-907.
[46] H. J. Zimmermann, Fuzzy set theory and its applications, 4th ed., Kluwer Niho, Boston,
2001.