[1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87{96.
[2] J. H. Bae and W. G. Park, A xed-point approach to the stability of a functional equation
on quadratic forms, Journal of Inequalities and Applications, 82 (2011), 1{7.
[3] J. H. Bae, W. G. Park,On the Ulam stability of the Cauchy-Jensen equation and the additive-
quadratic equation, J. Nonlinear Sci. Appl. 8(5) (2015), 710{718.
[4] G. Deschrijver, C. Cornelis and E. E. Kerre, On the representation of intuitionistic fuzzy
t-norms and t-conorms, IEEE Transaction on Fuzzy Systems, 12 (2004), 45{61.
[5] G. Deschrijver and E. E. Kerre, On the relationship between some extensions of fuzzy set
theory, Fuzzy Sets and Systems, 23 (2003), 227{235.
[6] Y. Dong, On approximate isometries and application to stability of a function, J. Math.
Anal. Appl., 426(2) (2015), 125{137.
[7] A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations, Publ.
Math. Debrecen, 48 (1996), 217{235.
[8] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A.,
27 (1941), 222{224.
[9] K. W. Jun and H. M. Kim The generalized Hyers-Ulam-Rassias stability of a cubic functional
equation, J. Math. Anal. Appl., 274 (2002), 867{878.
[10] S. M. Jung, Hyers-Ulam stability of linear dierential equations of rst order, II, App. Math.
Lett., 19 (2006), 854{858.
[11] N. C. Kayal, P. Mondal and T. K. Samanta, The generalized Hyers - Ulam - Rassias stability
of a quadratic functional equation in fuzzy banach spaces, Journal of New Results in Science,
1(5) (2014), 83{95.
[12] N. C. Kayal, P. Mondal and T. K. Samanta, The fuzzy stability of a pexiderized functional
equation, Mathematica Moravica, 18(2) (2014), 1{14.
[13] N. C. Kayal, P. Mondal and T. K. Samanta, Intuitionistic fuzzy stability of a quadratic
functional equation, Tbilisi Mathematical Journal, 8(2) (2015), 139{147.
[14] S. O. Kim, A. Bodaghi and C. Park, Stability of functional inequalities associated with the
Cauchy-Jensen additive functional equalities in non-Archimedean Banach spaces, J. Nonlin-
ear Sci. Appl., 8(5) (2015), 776{786.
[15] Y. Lan and Y. Shen, The general solution of a quadratic functional equation and Ulam
stability, J. Nonlinear Sci. Appl. 8(5) (2015), 640{649.
[16] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem,
Fuzzy Sets and Systems, 159 (2008), 720{729.
[17] P. Mondal, N. C. Kayal and T. K. Samanta, The stability of pexider type functional equation
in intuitionistic fuzzy Banach spaces via xed point technique, Journal of Hyperstructures,
4(1) (2015), 37{49.
[18] A. Najati, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, Turk
J Math, 31 (2007), 395{408.
[19] C. Park, Fuzzy stability of a functional equation associated with inner product space, Fuzzy
Sets and Systems, 160 (2009), 1632{1642.
[20] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22 (2004), 1039{
1046.
[21] Th. M. Rassias, On the stability of the linear mapping in Banach space, Proc. Amer. Math-
ematical Society, 72(2) (1978), 297{300.
[22] R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and
Fractals, 27 (2006), 331{344.
[23] T. K. Samanta and Iqbal H. Jebril, Finite dimentional intuitionistic fuzzy normed linear
space, Int. J. Open Problems Compt. Math., 2(4) (2009), 574{591.
[24] T. K. Samanta, N. C.Kayal and P. Mondal, The Stability of a General Quadratic Functional
Equation in Fuzzy Banach Space, Journal of Hyperstructures, 1(2) (2012), 71{87.
[25] T. K. Samanta, P. Mondal and N. C. Kayal, The generalized Hyers-Ulam-Rassias stability of
a quadratic functional equation in fuzzy Banach spaces, Annals of Fuzzy Mathematics and
Informatics, 6(2) (2013), 285{294.
[26] S. Shakeri, Intutionistic fuzzy stability of Jenson type mapping, J. Non linear Sc. Appl., 2(2)
(2009), 105{112.
[27] S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York,
1964(Chapter VI, Some Questions in Analysis: x1, Stability).
[28] L. A. Zadeh, Fuzzy sets, Information and control, 8 (1965), 338{353.