\bibitem{1} A. R. Arabpour and M. Tata, {\it Estimating the parameters of a
fuzzy linear regression model}, Iranian Journal of Fuzzy Systems,
{\bf5} (2008), 1-19.
\bibitem{2} G. Armano, M. Marchesi and A. Murru, {\it A
hybrid genetic-neural architecture for stock indexes forecasting},
Information Sciences, {\bf170} (2005), 3-33.
\bibitem{1} J. M. Bates and W. J.
Granger, {\it The combination of forecasts}, Operation Research,
{\bf20} (1969), 451-468.
\bibitem{1} P. Box and G. M. Jenkins, {\it Time
series analysis: forecasting and control}, Holden-day Inc, San
Francisco, CA, 1976.
\bibitem{1} M. C. Brace, J. Schmidt and M. Hadlin, {\it
Comparison of the forecasting accuracy of neural networks with
other established techniques}, In: Proceedings of the First Forum
on Application for weight elimination, IEEE Transactions on Neural
Networks of Neural Networks to Power Systems, Seattle, WA (1991),
31-35.
\bibitem{1} P. Chang, C. Liu and Y. Wang, {\it A hybrid model by
clustering and evolving fuzzy rules for sales decision supports in
printed circuit board industry}, Decision Support Systems, {\bf42}
(2006), 1254-1269.
\bibitem{1} S. M. Chen, {\it Forecasting enrollments
based on fuzzy time series}, Fuzzy Sets and Systems, {\bf81(3)}
(1996), 311--319, 1996.
\bibitem{1} K. Y. Chen and C. H. Wang, {\it A hybrid
SARIMA and support vector machines in forecasting the production
values of the machinery industry in Taiwan}, Expert Systems with
Applications, {\bf32} (2007), 254-264.
\bibitem{1} S. M. Chen and N. Y. Chung,
{\it Forecasting enrollments using high-order fuzzy time series
and genetic algorithms}, International J. Intell. Syst., {\bf21}
(2006), 485-501.
\bibitem{1} R. Clemen, {\it Combining forecasts: a
review and annotated bibliography with discussion}, International
Journal of Forecasting, {\bf5} (1989), 559-608.
\bibitem{1} J. W. Denton,
{\it How good are neural networks for causal forecasting?}, The
Journal of Business Forecasting, {\bf14(2)} (1995), 17-20.
\bibitem{1}
P. A. Fishwick, {\it Neural network models in simulation: a
comparison with traditional modeling approaches}, In: Proceedings
of Winter Simulation Conference, Washington, D. C., (1989),
702-710.
\bibitem{1} W. R. Foster, F. Collopy and L. H. Ungar, {\it
Neural network forecasting of short, noisy time series}, Computers
and Chemical Engineering, {\bf16(4)} (1992), 293-297.
\bibitem{1}
I. Ginzburg and D. Horn, {\it Combined neural networks for time
series analysis}, Neural Information Processing Systems, {\bf6}
(1994), 224-231.
\bibitem{1} T. H. Hann and E. Steurer, {\it Much
ado about nothing? exchange rate forecasting: neural networks vs.
linear models using monthly and weekly data}, Neurocomputing,
{\bf10} (1996), 323-339.
\bibitem{1} M. Haseyama and H. Kitajima,
{\it An ARMA order selection method with fuzzy reasoning}, Signal
Process, {\bf81} (2001), 1331-1335.
\bibitem{1} H. Hassanpour, H.
R. Maleki and M. A. Yaghoobi, {\it A note on evaluation of fuzzy
linear regression models by comparing membership functions},
Iranian Journal of Fuzzy Systems, {\bf6} (2009), 1-6.
\bibitem{1}
M. Hibon and T. Evgeniou, {\it To combine or not to combine:
selecting among forecasts and their combinations}, International
Journal of Forecasting, {\bf21} (2005), 15-24.
\bibitem{1} C. M.
Hurvich and C. L. Tsai, {\it Regression and time series model
selection in small samples}, Biometrica, {\bf76(2)} (1989),
297-307.
\bibitem{1} H. B. Hwang, {\it Insights into
neural-network forecasting time series corresponding to ARMA(p; q)
structures}, Omega, {\bf29} (2001), 273-289.
\bibitem{1} H.
Ishibuchi and H. Tanaka, {\it Interval regression analysis based on
mixed 0-1 integer programming problem}, J. Japan Soc. Ind. Eng,
{\bf40(5)} (1988), 312-319.
\bibitem{1} J. S. R. Jang, {\it ANFIS:
adaptive-network-based fuzzy inference system}, IEEE Trans Syst,
Man, Cybernet, {\bf23} (1993), 665-85.
\bibitem{1} R. H.
Jones, {\it Fitting autoregressions}, J. Amer. Statist. Assoc.,
{\bf70(351)} (1975), 590-592.
\bibitem{1} M. Khashei, {\it
Forecasting the Isfahan Steel Company production price in Tehran
Metals Exchange using Artificial Neural Networks (ANNs)}, Master
of Science Thesis, Isfahan University of Technology, 2005.
\bibitem{1} M. Khashei, S. R. Hejazi and M. Bijari, {\it A new hybrid
artificial neural networks and fuzzy regression model for time
series forecasting}, Fuzzy Sets and Systems, {\bf159} (2008),
769-786.
\bibitem{1} Y. Lin and W. G. Cobourn, {\it Fuzzy system
models combined with nonlinear regression for daily ground-level
ozone predictions}, Atmospheric Environment, {\bf41} (2007),
3502-3513.
\bibitem{1} L. Ljung, {\it System Identification
Theory for the User, Prentice-Hall}, Englewood Cliffs, NJ, 1987.
\bibitem{1} J. T. Luxhoj, J. O. Riis and B. Stensballe, {\it A hybrid
econometric-neural network modeling approach for sales
forecasting}, Int. J. Prod. Econ., {\bf43} (1996), 175-192.
\bibitem{1} S. Makridakis, A. Anderson, R. Carbone, R. Fildes. M.
Hibdon, R. Lewandowski, J. Newton, E. Parzen and R. Winkler, {\it The
accuracy of extrapolation (time series) methods: results of a
forecasting competition}, Journal of Forecasting, {\bf1} (1982),
111-53.
\bibitem{1} E. Mehdizadeh, S. Sadi-nezhad and R.
Tavakkoli-moghaddam, {\it Optimization of fuzzy clustering
criteria by a hybrid pso and fuzzy c-means clustering algorithm},
Iranian Journal of Fuzzy Systems, {\bf5} (2008), 1-14
\bibitem{1}
T. Minerva and I. Poli, {\it Building ARMA models with genetic
algorithms}, In: Lecture Notes in Computer Science, {\bf2037} (2001),
335-342.
\bibitem{1} C. Ong, J. J. Huang and G. H. Tzeng, {\it Model
identification of ARIMA family using genetic algorithms}, Appl.
Math. Comput., {\bf164(3)} (2005), 885-912.
\bibitem{1} P. F. Pai and
C. S. Lin, {\it A hybrid ARIMA and support vector machines model in
stock price forecasting}, Omega, {\bf33} (2005), 497-505.
\bibitem{1} E. Pelikan, C. De Groot and D. Wurtz, {\it Power
consumption in West-Bohemia: improved forecasts with decorrelating
connectionist networks}, Neural Network, {\bf2} (1992), 701-712.
\bibitem{1} M. J. Reid, {\it Combining three estimates of gross domestic
product}, Economica, {\bf35} (1968), 431-444.
\bibitem{1} R.
Shibata, {\it Selection of the order of an autoregressive model by
Akaike's information criterion}, Biometrika, {\bf AC-63(1)}
(1976), 117-126.
\bibitem{1} Z. Tang, C. Almeida and P. A. Fishwick,
{\it Time series forecasting using neural networks us,} Box-Jenkins
Methodology Simulation, {\bf57(5)} (1991), 303-310.
\bibitem{1}
Z. Tang and P. A. Fishwick, {\it Feedforward neural nets as models for
time series forecasting}, ORSA Journal on Computing, {\bf5(4)}
(1993), 374-385.
\bibitem{1} T. Taskaya and M. C. Casey, {\it
A comparative study of autoregressive neural network hybrids},
Neural Networks, {\bf18} (2005), 781-789.
\bibitem{1} N. Terui and
H. van Dijk, {\it Combined forecasts from linear and nonlinear
time series models}, International Journal of Forecasting, {\bf18}
(2002), 421-438.
\bibitem{1} R. Tsaih, Y. Hsu and C. C. Lai, {\it
Forecasting S$\&$P 500 stock index futures with a hybrid AI
system}, Decision Support Systems, {\bf23} (1998), 161-174.
\bibitem{1}
F. M. Tseng, G. H. Tzeng, H. C. Yu and B. J. C. Yuan, {\it Fuzzy ARIMA
model for forecasting the foreign exchange market}, Fuzzy Sets and
Systems, {\bf118} (2001), 9-19.
\bibitem{1} F. M. Tseng,
H. C. Yu and G. H. Tzeng, {\it Combining neural network model with
seasonal time series ARIMA model}, Technological Forecasting $\&$
Social Change, {\bf69} (2002), 71-87.
\bibitem{1} M. V. D. Voort and
M. Dougherty and S. Watson, {\it Combining Kohonen maps with ARIMA
time series models to forecast traffic flow}, Transportation
Research Part C: Emerging Technologies, {\bf4} (1996), 307-318.
\bibitem{1} H. Wold, {\it A Study in the analysis of stationary time
series}, Almgrist $\&$ Wiksell, Stockholm, 1938.
\bibitem{1} H. K. Yu,
{\it Weighted fuzzy time-series models for TAIEX forecasting},
Physica A, {\bf349} (2004), 609-624.
\bibitem{1} L. Yu, S.
Wang and K. K. Lai, {\it A novel nonlinear ensemble forecasting model
incorporating GLAR and ANN for foreign exchange rates}, Computers
and Operations Research, {\bf32} (2005), 2523-2541.
\bibitem{1}
G. Yule, {\it Why do we sometimes get nonsense-correlations
between time series? a study in sampling and the nature of time
series}, J. R. Statist. Soc., {\bf89} (1926), 1-64.
\bibitem{1}
G. P. Zhang, {\it Time series forecasting using a hybrid ARIMA and
neural network model}, Neurocomputing, {\bf50} (2003), 159-175.
\bibitem{1} G. Zhang, B. E. Patuwo and M. Y. Hu, {\it Forecasting with
artificial neural networks: the state of the art}, International
Journal of Forecasting, {\bf14} (1998), 35-62.
\bibitem{1} Z. J.
Zhou and C. H. Hu, {\it An effective hybrid approach based on grey and
ARMA for forecasting gyro drift, Chaos}, Solitons and Fractals,
{\bf35} (2008), 525-529.