[1] M. Abbas, M. Imdad and D. Gopal, "-weak contractions in fuzzy metric spaces, Iranian
Journal of Fuzzy Systems, in print.
[2] M. Alimohammady, E. Ekici, S. Jafari and M. Roohi, On fuzzy upper and lower contra-
continuous multifunctions, Iranian Journal of Fuzzy Systems, in print.
[3] I. Altun, Some xed point theorems for single and multivalued mappings on ordered non-
archimedean fuzzy metric spaces, Iranian Journal of Fuzzy Systems, 7(1) (2010), 91-96.
[4] I. Chitescu, Finitely purely atomic measures and Lp-spaces, An. Univ. Bucuresti St. Natur.,
24 (1975), 23-29.
[5] I. Chitescu, Finitely purely atomic measures: coincidence and rigidity properties, Rend. Circ.
Mat. Palermo(2), 50(3) (2001), 455-476.
[6] I. Dobrakov, On submeasures, I, Dissertationes Math., 112 (1974), 5-35.
[7] L. Drewnowski, Topological rings of sets, continuous set functions, Integration, I, II, III,
Bull. Acad. Polon. Sci. Ser. Math. Astron. Phys., 20 (1972), 269-286.
[8] A. Gavrilut, A Gould type integral with respect to a multisubmeasure, Math. Slovaca, 58(1)
(2008), 1-20.
[9] A. Gavrilut, On some properties of the Gould type integral with respect to a multisubmeasure,
An. St. Univ. Iasi, 52(1) (2006), 177-194.
[10] A. Gavrilut, Non-atomicity and the Darboux property for fuzzy and non-fuzzy Borel/Baire
multivalued set functions, Fuzzy Sets and Systems, 160 (2009), 1308-1317.
[11] A. Gavrilut, Regularity and autocontinuity of set multifunctions, Fuzzy Sets and Systems,
160 (2009), 681-693.
[12] A. Gavrilut, A Lusin type theorem for regular monotone uniformly autocontinuous set mul-
tifunctions, Fuzzy Sets and Systems, 161 (2010), 2909-2918.
[13] A. Gavrilut and A. Croitoru, Non-atomicity for fuzzy and non-fuzzy multivalued set functions,
Fuzzy Sets and Systems, 160 (2009), 2106-2116.
[14] A. Gavrilut and A. Petcu, A Gould type integral with respect to a submeasure, An. St. Univ.
Iasi, Tomul LIII, 2 (2007), 351-368.
[15] A. Gavrilut and A. Petcu, Some properties of the Gould type integral with respect to a
submeasure, Bul. Inst. Pol. Iasi, LIII (LVII), 5 (2007), 121-131.
[16] G. G. Gould, On integration of vector-valued measures, Proc. London Math. Soc., 15 (1965),
193-225.
[17] S. Hu and N. S. Papageorgiou, Handbook of multivalued analysis, Kluwer Acad. Publ., Dor-
drecht, I (1997).
[18] E. Pap, Null-additive set functions, Kluwer Academic Publishers, Dordrecht-Boston-London,
1995.
[19] Q. Jiang and H. Suzuki, Fuzzy measures on metric spaces, Fuzzy Sets and Systems, 83 (1996),
99-106.
[20] A. Precupanu and A. Croitoru, A Gould type integral with respect to a multimeasure, I, An.
St. Univ. Iasi, 48 (2002), 165-200.
[21] A. Precupanu, A. Gavrilut and A. Croitoru, A fuzzy Gould type integral, Fuzzy Sets and
Systems, 161 (2010), 661-680.
[22] H. Suzuki, Atoms of fuzzy measures and fuzzy integrals, Fuzzy Sets and Systems, 41 (1991),
329-342.
[23] C. Wu and S. Bo, Pseudo-atoms of fuzzy and non-fuzzy measures, Fuzzy Sets and Systems,
158 (2007), 1258-1272.