[1] R. Belohlavek, Fuzzy Relational Systems: Foundations and Principles, Kluwer Academic
Publishers/Plenum Publishers, New York, 2002.
[2] R. Belohlavek, Concept lattices and order in fuzzy logic, Ann. Pure Appl. Logic, 128(1-3)
(2004), 277-298.
[3] U. Bodenhofer, A new approach to fuzzy orderings, Tatra Mt Math Publ, 16(1) (1999), 1-9.
[4] U. Bodenhofer, Representations and constructions of similarity-based fuzzy orderings, Fuzzy
Sets and Systems, 137(1) (2003), 113-136.
[5] U. Bodenhofer and M. Demirci, Strict fuzzy orderings in a similarity-based setting, Proc. of
EUSFLAT-LFA 2005, Barcelona, Spain, (2005), 297-302.
[6] U. Bodenhofer, B. De Baets and J. Fodor, A compendium of fuzzy weak orders: Representa-
tions and constructions, Fuzzy Sets and Systems, 158(8) (2007), 811-829.
[7] H. Bouremel, R. Perez-Fernandez, L. Zedam and B. De Baets, The clone relation of a binary
relation, Information Sciences, doi: 10.1016/j.ins.2016.12.008, accepted.
[8] A. Burusco and R. Fuentes-Gonzales, The study of the L-fuzzy concept lattice, Mathware and
Soft Computing, 3 (1994), 209-218.
[9] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Second ed., Cambridge
University Press, Cambridge, 2002.
[10] B. De Baets and R. Mesiar, Triangular norms on product lattices, Fuzzy Sets and Systems,
104(1) (1999), 61-75.
[11] B. De Baets, L. Zedam and A. Kheniche, A clone-based representation of the fuzzy tolerance
or equivalence relations a strict order relation is compatible with, Fuzzy Sets and Systems,
296 (2016), 35-50.
[12] M. Demirci, Foundations of fuzzy functions and vague algebra based on many-valued equiva-
lence relations, Part I: fuzzy functions and their applications, Internat. J. General Systems,
32(2) (2003), 123-155.
[13] M. Demirci, A theory of vague lattices based on many-valued equivalence relations|I: general
representation results, Fuzzy Sets and Systems, 151(3) (2005), 437-472.
[14] J. A. Goguen, L-fuzzy sets, Journal of Mathematical Analysis and Applications, 18(1) (1967),
145-174.
[15] U. Hohle and N. Blanchard, Partial ordering in L-underdeterminate sets, Information Sciences,
35(2) (1985), 133-144.
[16] A. Kheniche, B. De Baets and L. Zedam, Compatibility of fuzzy relations, International
Journal of Intelligent Systems, 31(3) (2015), 240-256.
[17] P. Martinek, Completely lattice L-ordered sets with and without L-equality, Fuzzy Sets and
Systems, 166(1) (2011), 44-55.
[18] I. Perlieva, Normal forms in BL-algebra and their contribution to universal approximation
of functions, Fuzzy Sets and Systems, 143(1) (2004), 111-127.
[19] I. Perlieva, Fuzzy function: theoretical and practical point of view, Proc. EUSFLAT 2011,
Aix-les-Bains, France, (2011), 480-486.
[20] I. Perlieva, D. Dubois, H. Prade, F. Esteva, L. Godo and P. Hoddakova, Interpolation of
fuzzy data: Analytical approach and overview, Fuzzy Sets and Systems, 192 (2012), 134-158.
[21] B. S. Schroder, Ordered Sets, Birkhauser, Boston, 2002.
[22] H. L. Skala, Trellis theory, Algebra Universalis, 1 (1971), 218-233.
[23] K. Wang and B. Zhao, Join-completions of L-ordered sets, Fuzzy Sets and Systems, 199
(2012), 92-107.
[24] L. A. Zadeh, Similarity relations and fuzzy orderings, Information Sciences, 3(2) (1971),
177-200.
[25] Q. Zhang, W. Xie and L. Fan, Fuzzy complete lattices, Fuzzy Sets and Systems, 160(16)
(2009), 2275-2291.