\bibitem{} L. Fan, Q. Y. Zhang, W. Y. Xiang and C. Y. Zheng,
{\it An $L$-fuzzy approach to quantitative domain(I)-generalized
ordered set valued in frame and adjunction theory}, Fuzzy Systems and
Mathematics (The Special Issue of Theory of Fuzzy Sets and Application), In Chinese,
{\bf 14} (2000), 6-7.
\bibitem{} L. Fan, {\it Research of some problems in
domain theory}, Ph.D. Thesis of Capital Normal University, Beijing, In
Chinese, 2001.
\bibitem{} L. Fan, {\it A new approach to quantitative domain theory}, Electronic Notes
in Theoretic Computer Science,
http://www.elsevier.nl/locate/entcs, {\bf 45} (2001), 77-87.
\bibitem{} J. A. Goguen, {\it $L$-Fuzzy sets}, Journal of Mathematical Analysis and Application, {\bf 18} (1967), 145-174.
\bibitem{} U. H\"{o}hle and S. E. Rodabaugh, eds., {\it Mathematics of fuzzy sets: logic, topology, and
measure theory, The Handbooks of Fuzzy Sets Series},
Kluwer Academic Pubers (Boston/Dordrecht/London), {\bf 3} (1999).
\bibitem{} G. M. Kelly, {\it Basic concepts of enriched category theory}, London Mathematical Soceity Lecture Notes Series {\bf 64}, Cambridge University Press, 1982. Also: Reprints in Theory and Applications of Categories,
{\bf 10} (2005).
\bibitem{} H. L. Lai and D. X. Zhang, {\it Complete and directed complete
$\Omega$-categories}, Theoretical Computer Science, {\bf 388} (2007), 1-25.
\bibitem{} S. Mac Lane, {\it Categories for the working mathematician (2nd
edition)}, Springer-Verlag (Berlin/Heidelberg/New York), 2003.
\bibitem{} E. G. Manes, {\it Algebraic theories}, Springer Verlag (Berlin/Heidelberg/New York), 1976.
\bibitem{} S. E. Rodabaugh, {\it Point-set lattice-theoretic topology}, Fuzzy Sets and Systems, {\bf 40(2)} (1991), 297-345 .
\bibitem{} S. E. Rodabaugh, {\it Powerset operator based foundation for point-set lattice-theoretic (POSLAT) fuzzy set theories and topologies}, Quaestiones Mathematicae, {\bf 20(3)} (1997), 463-530.
\bibitem{} S. E. Rodabaugh, {\it Powerset operator foundations for poslat fuzzy set theories and topologies}, Chapter 2 in [5], 91-116.
\bibitem{} S. E. Rodabaugh, {\it Relationship of algebraic theories to powerset theories and fuzzy topological
theories for lattice-valued mathematics}, International Journal of
Mathematics and the Mathematical Sciences {\bf 3}, Article ID
43645, doi:10.1155/2007/43645, (2007), 71.
\bibitem{} K. R. Wagner, {\it Solving recursive domain equations with enriched categories}, Ph. D. Thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, 1994.
\bibitem{} W. Yao and L. X. Lu, {\it Fuzzy Galois connections on fuzzy posets}, Mathematical Logic Quarterly, {\bf 55} (2009), 105-112.
\bibitem{} W. Yao, {\it Quantitative domains via fuzzy sets: part I: continuity of fuzzy directed complete posets}, Fuzzy Sets and Systems, {\bf 161} (2010), 973-987.
\bibitem{} L. A. Zadeh, {\it Fuzzy Sets}, Information and Control, {\bf 8} (1965), 338-353.
\bibitem{} Q. Y. Zhang and L. Fan, {\it Continuity in quantitative domains}, Fuzzy Sets and Systems, {\bf 154} (2005), 118-131.
\bibitem{} Q. Y. Zhang and L. Fan, {\it A kind of $L$-fuzzy complete lattices
and adjoint functor theorem for $LF$-posets}, Report on the Fourth
International Symposium on Domain Theory, Hunan University,
Changsha, China, June 2006.
\bibitem{} Q. Y. Zhang and W. X. Xie, {\it Fuzzy complete lattices}, Fuzzy Sets and Systems, {\bf 160} (2009), 2275-2291.
\bibitem{} Q. Y. Zhang, L. Fan and W. X. Xie, {\it Adjoint functor theorem for fuzzy posets}, Indian Journal of Mathematics, {\bf 51} (2009), 305-342.