Document Type : Research Paper


1 School of Sciences, East China Institute of Technology, Fuzhou, Jiangxi 344000, China

2 Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province 445000, China

3 Department of Mathematics, Honghe University, Mengzi, Yunnan 661100, China


By means of a kind of new idea, we consider  the $(\in,\ivq)$-fuzzy
$h$-ideals of a hemiring.  First, the concepts of $(\in,\ivq)$-fuzzy
left(right) $h$-ideals of a hemiring are provided and some related
properties are investigated. Then, a kind  of quotient hemiring  of
a hemiring by an $(\in,\ivq)$-fuzzy $h$-ideal is presented and
studied. Moreover, the notions of generalized $\varphi$-compatible
$(\in,\ivq)$-fuzzy left(right) $h$-ideals of a hemiring are
introduced and some properties of them are provided. Finally, the
relationships among $(\in,\ivq)$-fuzzy $h$-ideals, quotient
hemirings and homomorphisms are  explored and several homomorphism
theorems are provided.


\bibitem{Bhakat} S. K. Bhakat and P. Das, \emph{$(\in,\ivq)$-fuzzy  subgroups}, Fuzzy Sets and Systems, \textbf{80} (1996), 359-368.
\bibitem{Davvaz} B. Davvaz and P. Corsini,   \emph{On $(\alpha,\beta)$-fuzzy
$H_v$-ideals of $H_v$-rings}, Iranian Journal of Fuzzy Systems,
\textbf{5} (2008), 35-47.

\bibitem{Dudek} W. A. Dudek, M. Shabir and M. I. Ali, \emph{$(\alpha,\beta)$-fuzzy ideals of
hemirings}, Computers and Math. Appl., \textbf{58} (2009), 310-321.

\bibitem{Glazek} K. Glazek, \emph{A guide to the literature on semirings and their applications in mathematics and information sciences: with complete
bibliography}, Kluwer Acad. Publ., Dodrecht, 2002.
\bibitem{Henriksen} M. Henriksen, \emph{Ideals in semirings with commutative addition}, Am. Math. Soc. Notces, \textbf{6} (1958), 321.
\bibitem{Huang} X. Huang, H. Li and Y. Yin, \emph{The $h$-hemiregular fuzzy duo hemirings}, International Journal of Fuzzy
       Systems, \textbf{9} (2007), 105-109.
\bibitem{Iizuka} K. Iizuka, \emph{On the Jacobson radical of a semiring}, Tohoku
Math. J, \textbf{11(2)} (1959), 409-421.
\bibitem{Jun} Y. B. Jun, M. A. $\ddot{O}$zt$\ddot{u}$rk and S. Z. Song, \emph{On fuzzy $h$-ideals in hemirings}, Information  Sciences, \textbf{162} (2004), 211-226.
\bibitem{LaTorre} D. R. La Torre, \emph{On $h$-ideals and $k$-ideals in hemrings}, Publ. Math. Debrecen, \textbf{12} (1965), 219-226.
\bibitem{Li} H. Li, X. Huang and Y. Yin, \emph{the characterization of regular
hemirings}, Southeast Asian Bull. Math., \textbf{32} (2008),
\bibitem{Ma} X. Ma and J. Zhan, \emph{Generalized fuzzy $h$-bi-ideals and $h$-quasi-ideals of hemirings}, Information  Sciences, \textbf{179} (2009), 1249-1268.
\bibitem{Rosenfeld} A. Rosenfeld, \emph{Fuzzy groups}, J. Math. Anal. Appl, \textbf{35} (1971), 512-517.

\bibitem{Wechler} W. Wechler, \emph{The concept  of fuzziness in automata and
language theory}, Akademie-Verlag, Belin, 1978.
\bibitem{Yin} Y. Yin and H. Li, \emph{The characterizations of $h$-hemiregular hemirings and
$h$-intra-hemiregular hemirings}, Information  Sciences, \textbf{178} (2008),
\bibitem{Yin2009} Y. Yin, X. Huang, D. Xu and F. Li, \emph{The characterization of $h$-semisimple hemirings},
International Journal of Fuzzy  Systems, \textbf{11} (2009),

\bibitem{Zhan2007}  J. Zhan and W. A. Dudek, \emph{Fuzzy $h$-ideal of hemirings}, Information  Sciences, \textbf{177} (2007), 876-886.
\bibitem{Zhan1} J. Zhan, Y. B. Jun and B. Davvaz,  \emph{On $(\in,\in\vee q)$-fuzzy
ideals of BCI-algebras}, Iranian Journal of Fuzzy Systems,
\textbf{6} (2009), 81-94.