\bibitem{1}
T.Bag, S.K.Samanta, Finite dimensional fuzzy normed linear spaces, The Journal of Fuzzy Mathematics,
{\bf 11}\textbf{(3)}(2003), 687-705.
\bibitem{2}
T.Bag, S.K.Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems,
{\bf 151}(2005), 513-547.
\bibitem{3}
T.Bag, S.K.Samanta, Fixed point theorems in fuzzy normed linear spaces, Information Sciences, Vol. 176 (2006) 2910-2931.
{\bf 176}(2006), 2910-2931.
\bibitem{4}
[4] T.Bag, S.K.Samanta, Fixed point theorems in Felbin's type fuzzy normed linear spaces,\\ The Journal of Fuzzy Mathematics, Vol. 16, No. 1 (2008) 243-260.
{\bf 16}\textbf{(1)}(2008), 243-260.
\bibitem{5}
T.Bag, S.K.Samanta, A comparative study of fuzzy norms on a linear space, Fuzzy Sets and Systems, Vol. 159 (2008) 670-684.
{\bf 159}(2008), 670-684.
\bibitem{6}
T.Bag, S.K.Samanta, Fuzzy bounded linear operators in Felbin's type fuzzy normed linear spaces, Fuzzy Sets and Systems, Vol. 159 (2008) 685-707.
{\bf 159}(2008), 685-707.
\bibitem{7}
T.Bag, S.K.Samanta, Fuzzy reflexive spaces, The Journal of Fuzzy Mathematics ( accepted for publication ).
\bibitem{8}
S.C.Cheng, J.N.Mordeson, Fuzzy linear operators and fuzzy normed linear spaces,\\ Bull.Cal.Math.Soc. Vol. 86 (1994) 429-436.
{\bf 86}(1994), 429-436.
\bibitem{9}
D.Dubois, H.Prade, Fuzzy elements in a fuzzy set, Proc. 10th Inter. Fuzzy Systems Assoc. ( IFSA ) Congress, Beijing, Springer, 2005, 55-60.
\bibitem{10}
C.Felbin, Finite dimensional fuzzy normed linear spaces, Fuzzy Sets and Systems,
{\bf 48}(1992) 239-248.
\bibitem{11}
C.Felbin, Finite dimensional fuzzy normed linear spaces II, J.Analysis,
{\bf 7}(1999) 117-131.
\bibitem{12}
A. Hasankhani, A. Nazari, M. Saheli, Some properties of fuzzy Hilbert spaces and norm of operators, Iranian Journal of Fuzzy Systems,
{\bf 7}\textbf{(3)}(2010), 129-157.
\bibitem{13}
O.Kaleva, S.Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems,
{\bf 12}(1984) 215-229.
\bibitem{14}
A.K.Katsaras, Fuzzy topological vector spaces, Fuzzy Sets and Systems,
{\bf 12}(1984) 143-154.
\bibitem{15}
W.A.Kirk, A fixed point theorem for mappings which do not increase distances, Am. Math. Monthly {\bf 72}(1965) 1004-1006.
\bibitem{16}
A.K.Kramosil, J.Michalek, Fuzzy metric and statistical metric spaces, Kybernetica
{\bf 11}(1975) 326-334.
\bibitem{17}
M.Mizumoto, J.Tanaka, Some properties of fuzzy numbers in : M.M.Gupta et al. Editors, Advances in Fuzzy Set Theory and Applications ( North-Holland, New-York, 1979 ) 153-164.
\bibitem{18}
[18] A. Narayanan, S. Vijyabalaji, Thillaigovindan, Intuitionistic fuzzy bounded linear operators, Iranian Journal of Fuzzy Systems,
{\bf 4}\textbf{(1)}(2007), 89-101.