MEAN-ABSOLUTE DEVIATION PORTFOLIO SELECTION MODEL WITH FUZZY RETURNS

Document Type : Research Paper

Authors

1 School of Economics and Management, Beihang University, Beijing 100191, China

2 School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China

3 Sinopec Management Institute, Beijing 100012, China

Abstract

In this paper, we consider portfolio selection problem in which
security returns are regarded as fuzzy variables rather than random variables.
We first introduce a concept of absolute deviation for fuzzy variables and
prove some useful properties, which imply that absolute deviation may be
used to measure risk well. Then we propose two mean-absolute deviation
models by defining risk as absolute deviation to search for optimal portfolios.
Furthermore, we design a hybrid intelligent algorithm by integrating genetic
algorithm and fuzzy simulation to solve the proposed models. Finally, we
illustrate this approach with two numerical examples.

Keywords


\bibitem{Abdelaziz} F. Abdelaziz, B. Aouni and R. Fayedh, {\it
Multi-objective stochastic programming for portfolio selection},
Eur. J. Oper. Res., {\bf 177} (2007), 1811-1823.
\bibitem{Arenas-Parra} M. Arenas-Parra, A. Bilbao-Terol and M. Rodr\'{\i}guez-Ur\'{\i}a,
{\it A fuzzy goal programming approach to portfolio selection}, Eur.
J. Oper. Res., {\bf 133} (2001), 287-297.
\bibitem{Bilbao} A. Bilbao-Terol, B. P\'{e}rez-Gladish, M. Arenas-Parra and M. Rodr\'{\i}gez-Ur\'{\i}a,
{\it Fuzzy compromise programming for portfolio selection}, Appl.
Math. Comput., {\bf 173} (2006), 251-264.
\bibitem{Corazza} M. Corazza and D. Favaretto, {\it On the existence of
solutions to the quadratic mixed-integer mean-variance portfolio
selection problem}, Eur. J. Oper. Res., {\bf 176} (2007), 1947-1980.
%\bibitem{Deng} X. Deng, Z. Li and S. Wang, {\it A minimax portfolio
%selection strategy with equilibrium}, Eur. J. Oper. Res., {\bf
%166}(2005), 278--292.
%\bibitem{Grootveld} H. Grootveld and W. Hallerbach, {\it Variance vs
%downside risk: is there really that much difference?}, Eur. J. Oper.
%Res., {\bf 114}(1999), 304--319.
%\bibitem{huang chance constrained}X. Huang, {\it Fuzzy chance-constrained
%portfolio selection}, Appl. Math. Comput., {\bf 177}(2006),
%500--507.
%\bibitem{Huang mean variance} X. Huang, {\it Portfolio selection with
%fuzzy returns}, J. Intell. Fuzzy Syst., {\bf 18}(2007), 383--390.
\bibitem{huang mean semivariance} X. Huang, {\it Mean-semivariance models
for fuzzy protfolio selection}, J. Comput. Appl. Math., {\bf
217} (2008), 1-8.
\bibitem{Konno and Yamazaki} H. Konno and H. Yamazaki, {\it Mean-absolute
deviation portfolio optimization model and its applications to Tokyo
Stock Market}, Manage. Sci., {\bf 37} (1991), 519-531.
\bibitem{li and liu 2006} X. Li and B. Liu, {\it A sufficient and necessary condition for credibility
measures}, Int. J. Uncertain. Fuzz., {\bf 14} (2006), 527-535.
\bibitem{Li and Liu entropy} X. Li and B. Liu, {\it Maximum entropy
principle for fuzzy variables}, Int. J. Uncertain. Fuzz., {\bf
15} (2007), 43-53.
\bibitem{li and qin skewness} X. Li, Z. Qin and S. Kar, {\it Mean-variance-skewness
model for portfolio selection with fuzzy returns}, Eur. J. Oper.
Res., {\bf 202} (2010), 239-247.
\bibitem{Liu book} B. Liu, {\it Theory and practice of uncertain
programming}, Physica-Verlag, Heidelberg, 2002.
\bibitem{liu 2007} B. Liu, {\it Uncertainty theory}, 2nd ed.,
Springer-Verlag, Berlin, 2007.
\bibitem{liu iwamura} B. Liu and K. Iwamura, {\it Chance constrained
programming with fuzzy parameters}, Fuzzy Sets and Systems, {\bf
94} (1998), 227-237.
\bibitem{liu and liu 2002} B. Liu and Y. Liu, {\it Expected value of fuzzy variable and
fuzzy expected value models}, IEEE T. Fuzzy Syst., {\bf 10} (2002),
445-450.
%\bibitem{Liu wang} S. Liu, S. Wang and W. Qiu, {\it A
%mean-variance-skewness model for portfolio selection with
%transaction costs}, Int. J. Syst. Sci, {\bf 34}(2003), 255--262.
\bibitem{ykliu1} Y. Liu, {\it Convergent results about the use of fuzzy simulation in fuzzy optimization
problems}, IEEE T. Fuzzy Syst., {\bf 14} (2006), 295-304.
\bibitem{Markowitz 52} H. Markowitz, {\it Porfolio selection}, J. Finance, {\bf 7} (1952), 77-91.
\bibitem{Markowitz 59} H. Markowitz, {\it Portfolio selection: efficient
diversification of investments}, Wiley, New York, 1959.
%\bibitem{Markowitz 90} H. Markowitz, {\it Computation of
%mean-semivariance efficient sets by the critical line algorithm},
%Ann. Oper. Res., {\bf 45}(1993), 307--317.
\bibitem{Qin Li Ji} Z. Qin, X. Li and X. Ji, {\it Portfolio selection based on
fuzzy cross-entropy}, J. Comput. Appl. Math., {\bf 228} (2009),
139--149.
%\bibitem{Roy} A.D. Roy, {\it Safety first and the holding of assets}, Econometrics, {\bf 20}(1952), 431--449.
\bibitem{Simaan} Y. Simaan, {\it Estimation risk in portfolio selection:
the mean vairance model versus the mean absolute deviation model},
Manage. Sci., {\bf 43} (1997), 1437-1446.
\bibitem{Speranza} M. G. Speranza, {\it Linear programming model for
portfolio optimization}, Finance, {\bf 14} (1993), 107-123.
\bibitem{Tanaka guo} H. Tanaka and P. Guo, {\it Portfolio selection based on
upper and lower exponential possibility distributions}, Eur. J.
Oper. Res., {\bf 114} (1999), 115-126.
\bibitem{Tanaka guo Turksen} H. Tanaka, P. Guo and I. T\"{u}rksen, {\it Portfolio selection based on
fuzzy probabilities and possibility distributions}, Fuzzy Sets and
Systems, {\bf 111} (2000), 387-397.
\bibitem{Vercher} E. Vercher, J. Berm\'{u}dez and J. Segura, {\it Fuzzy
portfolio optimization under downside risk measures}, Fuzzy Sets and
Systems, {\bf 158} (2007), 769-782.
\bibitem{Yang 1} L. Yang, K. Li and Z. Gao, {\it Train timetable
problem on a single-line railway with fuzzy passenger demand}, IEEE
T. Fuzzy Syst., {\bf 17} (2009), 617-629.
\bibitem{Yang 2} L. Yang and L. Liu, {\it Fuzzy fixed charge solid transportation
problem and algorithm}, Appl. Soft Comput., {\bf 7} (2007), 879-889.
\bibitem{Yang 3} L. Yang, Z. Gao and K. Li, {\it Railway
freight transportation planning with mixed uncertainty of randomness
and fuzziness}, Appl. Soft Comput., {\bf 11} (2011), 778-792.
\bibitem{Zadeh} L. A. Zadeh, {\it Fuzzy sets}, Information and Control, {\bf 8} (1965), 338-353.
\bibitem{Zhang} W. Zhang and Z. Nie, {\it On admissible efficient
portfolio selection problem}, Appl. Math. Comput., {\bf 159} (2004),
357-371.