Document Type : Research Paper


1 School of Economics and Management, Beihang University, Beijing 100191, China

2 School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China

3 Sinopec Management Institute, Beijing 100012, China


In this paper, we consider portfolio selection problem in which
security returns are regarded as fuzzy variables rather than random variables.
We first introduce a concept of absolute deviation for fuzzy variables and
prove some useful properties, which imply that absolute deviation may be
used to measure risk well. Then we propose two mean-absolute deviation
models by defining risk as absolute deviation to search for optimal portfolios.
Furthermore, we design a hybrid intelligent algorithm by integrating genetic
algorithm and fuzzy simulation to solve the proposed models. Finally, we
illustrate this approach with two numerical examples.


\bibitem{Abdelaziz} F. Abdelaziz, B. Aouni and R. Fayedh, {\it
Multi-objective stochastic programming for portfolio selection},
Eur. J. Oper. Res., {\bf 177} (2007), 1811-1823.
\bibitem{Arenas-Parra} M. Arenas-Parra, A. Bilbao-Terol and M. Rodr\'{\i}guez-Ur\'{\i}a,
{\it A fuzzy goal programming approach to portfolio selection}, Eur.
J. Oper. Res., {\bf 133} (2001), 287-297.
\bibitem{Bilbao} A. Bilbao-Terol, B. P\'{e}rez-Gladish, M. Arenas-Parra and M. Rodr\'{\i}gez-Ur\'{\i}a,
{\it Fuzzy compromise programming for portfolio selection}, Appl.
Math. Comput., {\bf 173} (2006), 251-264.
\bibitem{Corazza} M. Corazza and D. Favaretto, {\it On the existence of
solutions to the quadratic mixed-integer mean-variance portfolio
selection problem}, Eur. J. Oper. Res., {\bf 176} (2007), 1947-1980.
%\bibitem{Deng} X. Deng, Z. Li and S. Wang, {\it A minimax portfolio
%selection strategy with equilibrium}, Eur. J. Oper. Res., {\bf
%166}(2005), 278--292.
%\bibitem{Grootveld} H. Grootveld and W. Hallerbach, {\it Variance vs
%downside risk: is there really that much difference?}, Eur. J. Oper.
%Res., {\bf 114}(1999), 304--319.
%\bibitem{huang chance constrained}X. Huang, {\it Fuzzy chance-constrained
%portfolio selection}, Appl. Math. Comput., {\bf 177}(2006),
%\bibitem{Huang mean variance} X. Huang, {\it Portfolio selection with
%fuzzy returns}, J. Intell. Fuzzy Syst., {\bf 18}(2007), 383--390.
\bibitem{huang mean semivariance} X. Huang, {\it Mean-semivariance models
for fuzzy protfolio selection}, J. Comput. Appl. Math., {\bf
217} (2008), 1-8.
\bibitem{Konno and Yamazaki} H. Konno and H. Yamazaki, {\it Mean-absolute
deviation portfolio optimization model and its applications to Tokyo
Stock Market}, Manage. Sci., {\bf 37} (1991), 519-531.
\bibitem{li and liu 2006} X. Li and B. Liu, {\it A sufficient and necessary condition for credibility
measures}, Int. J. Uncertain. Fuzz., {\bf 14} (2006), 527-535.
\bibitem{Li and Liu entropy} X. Li and B. Liu, {\it Maximum entropy
principle for fuzzy variables}, Int. J. Uncertain. Fuzz., {\bf
15} (2007), 43-53.
\bibitem{li and qin skewness} X. Li, Z. Qin and S. Kar, {\it Mean-variance-skewness
model for portfolio selection with fuzzy returns}, Eur. J. Oper.
Res., {\bf 202} (2010), 239-247.
\bibitem{Liu book} B. Liu, {\it Theory and practice of uncertain
programming}, Physica-Verlag, Heidelberg, 2002.
\bibitem{liu 2007} B. Liu, {\it Uncertainty theory}, 2nd ed.,
Springer-Verlag, Berlin, 2007.
\bibitem{liu iwamura} B. Liu and K. Iwamura, {\it Chance constrained
programming with fuzzy parameters}, Fuzzy Sets and Systems, {\bf
94} (1998), 227-237.
\bibitem{liu and liu 2002} B. Liu and Y. Liu, {\it Expected value of fuzzy variable and
fuzzy expected value models}, IEEE T. Fuzzy Syst., {\bf 10} (2002),
%\bibitem{Liu wang} S. Liu, S. Wang and W. Qiu, {\it A
%mean-variance-skewness model for portfolio selection with
%transaction costs}, Int. J. Syst. Sci, {\bf 34}(2003), 255--262.
\bibitem{ykliu1} Y. Liu, {\it Convergent results about the use of fuzzy simulation in fuzzy optimization
problems}, IEEE T. Fuzzy Syst., {\bf 14} (2006), 295-304.
\bibitem{Markowitz 52} H. Markowitz, {\it Porfolio selection}, J. Finance, {\bf 7} (1952), 77-91.
\bibitem{Markowitz 59} H. Markowitz, {\it Portfolio selection: efficient
diversification of investments}, Wiley, New York, 1959.
%\bibitem{Markowitz 90} H. Markowitz, {\it Computation of
%mean-semivariance efficient sets by the critical line algorithm},
%Ann. Oper. Res., {\bf 45}(1993), 307--317.
\bibitem{Qin Li Ji} Z. Qin, X. Li and X. Ji, {\it Portfolio selection based on
fuzzy cross-entropy}, J. Comput. Appl. Math., {\bf 228} (2009),
%\bibitem{Roy} A.D. Roy, {\it Safety first and the holding of assets}, Econometrics, {\bf 20}(1952), 431--449.
\bibitem{Simaan} Y. Simaan, {\it Estimation risk in portfolio selection:
the mean vairance model versus the mean absolute deviation model},
Manage. Sci., {\bf 43} (1997), 1437-1446.
\bibitem{Speranza} M. G. Speranza, {\it Linear programming model for
portfolio optimization}, Finance, {\bf 14} (1993), 107-123.
\bibitem{Tanaka guo} H. Tanaka and P. Guo, {\it Portfolio selection based on
upper and lower exponential possibility distributions}, Eur. J.
Oper. Res., {\bf 114} (1999), 115-126.
\bibitem{Tanaka guo Turksen} H. Tanaka, P. Guo and I. T\"{u}rksen, {\it Portfolio selection based on
fuzzy probabilities and possibility distributions}, Fuzzy Sets and
Systems, {\bf 111} (2000), 387-397.
\bibitem{Vercher} E. Vercher, J. Berm\'{u}dez and J. Segura, {\it Fuzzy
portfolio optimization under downside risk measures}, Fuzzy Sets and
Systems, {\bf 158} (2007), 769-782.
\bibitem{Yang 1} L. Yang, K. Li and Z. Gao, {\it Train timetable
problem on a single-line railway with fuzzy passenger demand}, IEEE
T. Fuzzy Syst., {\bf 17} (2009), 617-629.
\bibitem{Yang 2} L. Yang and L. Liu, {\it Fuzzy fixed charge solid transportation
problem and algorithm}, Appl. Soft Comput., {\bf 7} (2007), 879-889.
\bibitem{Yang 3} L. Yang, Z. Gao and K. Li, {\it Railway
freight transportation planning with mixed uncertainty of randomness
and fuzziness}, Appl. Soft Comput., {\bf 11} (2011), 778-792.
\bibitem{Zadeh} L. A. Zadeh, {\it Fuzzy sets}, Information and Control, {\bf 8} (1965), 338-353.
\bibitem{Zhang} W. Zhang and Z. Nie, {\it On admissible efficient
portfolio selection problem}, Appl. Math. Comput., {\bf 159} (2004),