[1] J. Ad´amek, H. Herrlich and G. E. Strecker,Abstract and concrete categories, J. Wiley &
Sons, New York, 1990.
[2] C. L. Chang,Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-193.
[3] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott,A compendium
of continuous lattice, Springer Verlag, Berlin/Heidelberg/New York.
[4] U. H¨ohle,Upper semicontinuous fuzzy sets and applications, J. Math. Anal. Appl., 78 (1980),
659-673.
[5] U. H¨ohle and A. P. ˇSostak,Axiomatic foundations of fixed-basis fuzzy topology, Chapter 3 in:
H¨ohle U., Rodabaugh S. E.(Eds), Mathematics of Fuzzy Sets-Logic, Topology and Measure
Theory, Kluwer Academic Publishers (Boston/Dordrecht/London), (1999), 123-272.
[6] K. C. Min,Fuzzy limit spaces, Fuzzy Sets and Systems, 32 (1989), 343-357.
[7] T. Kubiak,On fuzzy topologies, (PhD Thesis, Adam Mickiewicz, Poznan, Poland, 1985.
[8] Y. M. Li,Limit structures over completely distributive lattices, Fuzzy Sets and Systems, 132
(2002), 125-134.
[9] S. E. Rodabaugh,Powerset operator foundations for poslat fuzzy set theories and topologies,
Chapter 2 in [5]: (1999), 91-116.
[10] S. E. Rodabaugh,Categorical foundations of variable-basis fuzzy topology, Chapter 4 in [5],
273-388.
[11] A. P. ˇSostak,On a fuzzy topological structure, Rendiconti Ciecolo Matematico Palermo
(Suppl. Ser. II),11 (1985), 89-103.
[12] G. J. Wang,Theory of topological molecular lattices, Fuzzy Sets and Systems, 47 (1992),
351-376.
[13] L. S. Xu,Characterizations of fuzzifying topologies by some limit structures, Fuzzy Sets and
Systems,123 (2001), 169-176.
[14] Z. Q. Yang,Ideals in topological molecular lattices, Acta Math.Sinica, 2 (1986), 276-279 (in
Chinese).
[15] M. Ying ,A new approach to fuzzy topology (I), Fuzzy Sets and Systems, 39 (1991), 303-321.
[16] Y. Yue and J. Fang,Categories isomorphic to the Kubiak-ˇSostak extension of TML, Fuzzy
Sets and Systems,157 (2006), 832-842.