[1] S. Bauer S, L. P. Nolte and M. Reyes, Fully automatic segmentation of brain tumor im-
ages using support vector machine classication in combination with hierarchical conditional
random eld regularization, Med Image Comput Assist Interv., 14(3) (2011), 354{361.
[2] C. J. C. Burges., A tutorial on support vector machines for pattern recognition, Data Mining
and Knowledge Discovery, 2 (1998), 121{167.
[3] S. Chaplot , L. M. Patnai and N. R. Jagannathan , Classication of magnetic resonance brain
images using wavelets as input to support vector machine and neural network, Biomedical
Signal Processing and Control, 1(1) (2006), 86{92.
[4] J. Chunming Li, R. Huang, Z. Ding and J. Chris Gatenby, A level set method for image
segmentation in the presence of intensity in-homogeneities with application to MRI, IEEE
Trans Image Process, 20 (2011), 2007{2016.
[5] R. Dhanasekaran and A. Jayachandranm, Brain tumor detection using fuzzy support vector
machine classication based on a texton Co-occurrence matrix, Journal of imaging Science
and Technology, 57(1) (2013), 10507-1{10507-7.
[6] S. R. Dubey, S. K. Singh, and R. K. Singh, Rotation and scale invariant hybrid image
descriptor and retrieval, Computers & Electrical Engineering, 46(8) (2015), 288{302.
[7] N. E. Ibrahim, S. Khalid and M. Manaf, Seed-Based region growing (SBRG) vs adaptive
network-based inference system (ANFIS) vs fuzzy c-means(FCM) - brain abnormalities seg-
mentation, World Acad. Sci. Eng. Technol., 68 (2010), 425{435.
[8] A. Jayachandran and R. Dhanasekaran, Automatic detection of brain tumor in magnetic
resonance images using multi-texton histogram and support vector machinel, International
Journal of Imaging Systems and Technology, 23(2) (2013), 97{103.
[9] A. Jayachandran and R. Dhanasekaran, Severity analysis of brain tumor in MRI images uses
modied multi-texton structure descriptor and kernel- SVM, The Arabian Journal of science
and engineering, 39(10) (2014), 7073{7086.
[10] B. Julesz, Textons|the elements of texture perception and their interactions, Nature, 290
(1981), 91{97.
[11] G. Kharmega Sundararaj and A. Jayachandran, Abnormality segmentation and classica-
tion of multi-class brain tumor in MR images using fuzzy logic-based hybrid kernel SVM,
International journal of Fuzzy System, 17(3) (2015), 434{443.
[12] J. S. Lin, K. S. Cheng and C. W. Mao, Segmentation of multispectral magnetic resonance im-
age using penalized fuzzy competitive learning network, Journal of Computers and Biomedical
Research, 29(4) (1996), 314{326.
[13] G. H. Liu, L. Zhang, Yingkun Hou, Zuoyong Li and Jing-Yu Yang, Image retrieval based on
multi-texton histogram, Pattern Recognition, 43(7) (2010), 2380{2389.
[14] C. L. P. Long-Chen, Philip Chen and L. U. Mingzhu, A multiple-kernel fuzzy C-means algo-
rithm for image segmentation, IEEE Transactions On Systems, Man, and Cybernetics{Part
B: Cybernetics, 41(5) (2011), 1263{1274.
[15] T. Wang and H. M. Chiang, Fuzzy support vector machine for multi-class text categorization,
Information Processing and Management, 43 (2007), 914{929.
[16] R. J. Young and E. A. Knopp, Brain MRI: tumor evaluation, Journal of Magnetic Resonance
Imaging, 24 (2006), 709{724.
[17] E. I. Zacharaki, S. Wang, S. Chawla, E. R. Melhem and C. Davatzikos, Classication of brain
tumor type and grade using MRI texture in a machine learning technique, Magn. Reson. Med.,
62 (2009), 1609{1618.
[18] K. Zhang, H. X. Cao and H. Yan, Application of support vector machines on network abnor-
mal intrusion detection, Application Research of Computers, 5 (2006), 98{100.
[19] C. Zhu and T. Jiang, Multi context fuzzy clustering for separation of brain tissues in magnetic
resonance images, Neuro lmage, 18(3) (2003), 685 {696.
[20] W. Zhu, N. Zeng and N. Wang, Sensitivity, specicity, accuracy, associated condence in-
terval and ROC analysis with practical SAS implementations, In: Proceedings of the SAS
Conference, NESUG 210, November 14{17, Baltimore, Maryland, 2010.