[1]R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and A. I. Verkamo, Fast discovery of association rules, in U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy,Advances in Knowledge Discovery and Data Mining
, AAAI Press, 1996.
[2]S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D. J.Lipman,
Gapped blast and PSI-blast: A new generation of protein database search programs,Nucleic Acids Research,
25 (17) (1997), 3389-3402.
[3]S. Bandyopadhyay, An efficient technique for superfamily classification of amino acid
sequences: feature extraction, fuzzy clustering and prototype selection
, Fuzzy Sets andSystems,152 (2005), 5-16.
[4]A. Baxevanis and F.B.F. Ouellette, Bioinformatics: A practical guide to the analysis of genes
and proteins, Wiley, New York, 1998.
[5]M. O. Dayhoff, R. M. Schwartz and B. C. Orcutt, A model of evolutionary change in
proteins, Atlas of Protein Sequence and Structure, 5 (1978), 345-352.
[6]L. French, A. Ngom and L. Rueda, Fast protein superfamily classification using principal
component null space analysis, Proc. 18th Canadian Conference Artificial Intelligence,
Victoria, Canada, (2005), 158-169.
[7]A. Gonzalez and R. Perez, SLAVE: A genetic learning system based on an iterative
approach, IEEE Trans. Fuzzy Systems, 7 (2) (1999), 176-191.
[8]H. Ishibuchi, T. Nakashima and T. Morisawa, Voting in fuzzy rule-based systems for pattern
classification problems, Fuzzy Sets and Systems, 103 (2) (1999), 223-238.
[9]H. Ishibuchi, K. Nozaki, and H. Tanaka, Distributed representation of fuzzy rules and its
application to pattern classification, Fuzzy Sets and Systems, 52 (1) (1992), 21-32.
[10]H. Ishibuchi and T. Yamamoto, Comparison of heuristic criteria for fuzzy rule selection in
classification problems, Fuzzy Optimization and Decision Making, 3 (2) (2004), 119-139.
[11]H. Ishibuchi and T. Yamamoto, Rule weight specification in fuzzy rule-based classification
systems, IEEE Trans. Fuzzy Systems, 13 (4) (2005), 428-435.
[12]T. Jaakkola, M. Diekhans and D. Haussler, A discriminative framework for detecting remote
protein homologiesJournal of Computational Biology, 2000.
[13]C. Leslie, E. Eskin and W.S. Noble, The spectrum kernel: a string kernel for SVM protein
classification, Pac. Symp. Biocomputing, (2002), 564-575.
[14]M. Madera and J. Gough, A comparison of profile hidden Markov model procedures for
remote homology detectionNucleic Acids Res., 30 (2002), 4321–4328.
[15]E. G. Mansoori, M. J. Zolghadri and S. D. Katebi, A weighting function for improving fuzzy
classification systems performance, Fuzzy Sets and Systems, 158 (5) (2007), 583-591.
[16]E. G. Mansoori, M. J. Zolghadri and S. D. Katebi, Using distribution of data to enhance
performance of fuzzy classification systems, Iranian Journal of Fuzzy Systems, 4 (1) (2007),21-36.
[17]R. Mikut, J. Jäkel and L. Gröll, Interpretability issues in data-based learning of fuzzy systems,
Fuzzy Sets and Systems,150 (2005), 179-197.
[18]W. Pedrycz, Why triangular membership functions?, Fuzzy Sets and Systems, 64 (1) (1994),
21-30.
[19]J. R. Quinlan, Improved use of continuous attributes in C4.5, Journal of Artificial
Intelligence Research,4 (1996), 77-90.
[20]J. A. Roubos, M. Setnes and J. Abonyi, Learning fuzzy classification rules from labeled data,
IEEE Trans. Fuzzy Systems,8 (5) (2001), 509-522.
[21]The UniProt Consortium, The Universal Protein Resource (UniProt), Nucleic Acids
Research,5 (2007), D193-D197.
[22]D. Wang and G. Huang, Protein sequence classification using extreme learning machine,
Proc. Int. Joint Conf. Neural Networks, Canada, 2005.
[23]D. Wang, N. K. Lee and T. S. Dillon, Extraction and optimization of fuzzy protein sequences
classification rules using GRBF neural networks, Neural Information Processing - Letters
and Reviews,1 (1) (2003), 53-59.
[24]J. T. L. Wang, Q. C. Ma, D. Shasha and C. H. Wu, New techniques for extracting features
from protein sequences, IBM Systems Journal, 40 (2) (2001), 426-441.
[25]C. H. Wu and J. W. McLarty, Neural Networks and Genome Informatics, Elsevier,
Amsterdam, (2000).
[26]M. J. Zolghadri and E. G. Mansoori, Weighting fuzzy classification rules using Receiver
Operating Characteristics (ROC) analysis, Information Sciences, 177 (11) (2007), 2296-2307.