[1] I. Altun and D. Mihet, Ordered non-Archimedean fuzzy metric spaces and some xed point
results, Fixed Point Theory Appl., Article ID 782680, 2010 (2010), 1{11.
[2] M. Amini and R. Saadati, Topics in fuzzy metric spaces, J. Fuzzy Math., 11(4) (2003),
765{768.
[3] A. Amini-Harandi and H. Emami, A xed point theorem for contraction type maps in partially
ordered metric spaces and application to ordinary dierential equations, Nonlinear Anal., 72
(2010), 2238{2242.
[4] S. H. Cho, J. S. Bae and E. Karapinar, Fixed point theorems for -Geraghty contraction type
maps in metric spaces, Fixed Point Theory Appl., Article ID 329, 2013 (2013), 1{11.
[5] C. Di Bari and C. Vetro, A xed point theorem for a family of mappings in a fuzzy metric
space, Rend. Circ. Mat. Palermo, 52(2) (2003), 315{321.
[6] C. Di Bari and C. Vetro, Fixed points, attractors and weak fuzzy contractive mappings in a
fuzzy metric space, J. Fuzzy Math., 13(4) (2005), 973{982.
[7] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64
(1994), 395{399.
[8] A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets
Syst., 90 (1997), 365{368.
[9] M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604{608.
[10] D. Gopal and C. Vetro, Some new xed point theorems in fuzzy metric spaces, Iranian J.
Fuzzy Syst., 11(3) (2014), 95{107.
[11] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 27 (1988), 385{389.
[12] V. Gregori and A. Sapena, On xed point theorems in fuzzy metric spaces, Fuzzy Sets Syst.,
125 (2002), 245{253.
[13] I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetica, 11(5)
(1975), 336{344.
[14] V. La Rosa and P. Vetro, Fixed points for Geraghty-contractions in partial metric spaces, J.
Nonlinear Sci. Appl., 7(1) (2014), 1{10.
[15] D. Mihet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets Syst., 144 (2004),
431{439.
[16] D. Mihet, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets Syst., 158 (2007),
915{921.
[17] D. Mihet, Fuzzy -contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets
Syst., 159 (2008), 739{744.
[18] D. Mihet, A class of contractions in fuzzy metric spaces, Fuzzy Sets Syst., 161 (2010),
1131{1137.
[19] P. P. Murthy, U. Mishra, Rashmi and C. Vetro, Generalized ('; )-weak contractions involv-
ing (f; g)-reciprocally continuous maps in fuzzy metric spaces, Ann. Fuzzy Math. Inform.,
5(1) (2013), 45{57.
[20] R. Saadati, S. M. Vaezpour and Y. J. Cho, Quicksort algorithm: Application of a xed point
theorem in intuitionistic fuzzy quasi-metric spaces at a domain of words, J. Comput. Appl.
Math., 228(1) (2009), 219{225.
[21] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for - -contractive type mappings,
Nonlinear Anal., 75 (2012), 2154{2165.
[22] B. Schweizer and A. Sklar, Statistical metric spaces, Pacic J. Math., 8(3) (1965), 338{353.
[23] C. Vetro, D. Gopal and M. Imdad, Common xed point theorems for (; )-weak contractions
in fuzzy metric spaces, Indian J. Math., 52(3) (2010), 573{590.
[24] C. Vetro and P. Vetro, Common xed points for discontinuous mappings in fuzzy metric
spaces, Rend. Circ. Mat. Palermo, 57(2) (2008), 295{303.
[25] L. A. Zadeh, Fuzzy Sets, Inform. Control, 10(1) (1960), 385{389.