[1] M. Aamri and D. EI Moutawakil, Some new common xed point theorems under strict con-
tractive conditions, J. Math. Anal. Appl., 270 (2002), 181{188.
[2] M. Abbas, M. Ali Khan and S. Radenovic, Common coupled xed point theorems in cone
metric spaces for w-compatible mappings, Appl. Math. Comput., 217(1) (2010), 195{202.
[3] C. Alaca, D. Turkoglu and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos,
Solitons and Fractals, 29 (2006), 1073{1078.
[4] K. T. Atanassov, Intuitionistic fuzzy set, Fuzzy Sets and Systems, 20(1) (1986), 87{96.
[5] T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric
spaces and applications, Nonlinear Anal. TMA., 65 (2006), 1379{1393.
[6] A. Branciari, A xed point theorem for mappings satisfying a general contractive condition
of integral type, Int. J. Math. Sci., 29(9) (2002), 531{536.
[7] G. Deschrijver, C. Cornelis and E. E. Kerre, On the representation of intuitionistic fuzzy
t-norms and t-conorms , IEEE Trans Fuzzy System, 12(3) (2004), 45{61.
[8] G. Deschrijver and E. E. Kerre, On the relationship between some extensions of fuzzy set
theory, Fuzzy Sets System, 133(2) (2003), 227{235.
[9] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems,
64(3) (1994), 395{399.
[10] V. Gregori, S. Romaguera and P. Veereamani, A note on intuitionistic fuzzy metric spaces ,
Chaos, Solitons and Fractals, 28(4) (2006), 902{905.
[11] V. Gupta, A. Kanwar and N. Gulati, Common coupled xed point result in fuzzy metric
spaces using JCLR property, Smart Innovation, Systems and Technologies, Springer, 43(1)
(2016), 201{208.
[12] V. Gupta and A. Kanwar, Fixed point theorem in fuzzy metric spaces satisfying E.A Property
, Indian Journal of Science and Technology, 5(12) (2012), 3767{3769.
[13] S. Jain, S. Jain and L. B. Jain, Compatibility of type (P) in modied intuitionistic fuzzy
metric space , Journal of Nonlinear Science and its Applications, 3(2) (2010), 96{109.
[14] S. M. Kang , V. Gupta, B. Singh and S. Kumar, Some common xed point theorems using
implicit relations in fuzzy metric spaces, International Journal of Pure and Applied Mathe-
matics, 87(2) (2013), 333{347.
[15] I. Kramosil and J. Michalek, Fuzzy metric and Statistical metric spaces, Kybernetica, 11
(1975), 326{334.
[16] V. Lakshmikantham and Lj. B. Ciric, Coupled xed point theorems for nonlinear contractions
in partially ordered metric space , Nonlinear Anal. TMA., 70 (2009), 4341{4329.
[17] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22(5) (2004),
1039{1046.
[18] R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and
Fractals, 27(2) (2006), 331{344.
[19] R. Saadati, S. Sedghi and N. Shobe, Modied intuitionistic fuzzy spaces and some xed point
theorems, Chaos, Solitons and Fractals, 38(1) (2008), 36{47.
[20] R. K. Saini, V. Gupta and S. B. Singh, Fuzzy version of some xed points theorems on
expansion type maps in fuzzy metric space, Thai Journal of Mathematics, 5(2) (2007), 245{
252.
[21] S. Sedghi, N. Shobe and A. Aliouche, Common xed point theorems in intuitionistic fuzzy
metric spaces through conditions of integral type, Applied Mathematics and Information
Sciences, 2(1) (2008), 61{82.
[22] M. Tanveer , M. Imdad, D. Gopal and D. K. Patel, Common xed point theorems in modied
intuitionistic fuzzy metric spaces with common property (E.A.), Fixed Point Theory and
Applications, doi :10.1186/1687-1812-2012-36, article 36 (2012), 1{12.
[23] D. Turkoglu, C. Alaca, Y. J. Cho and C. Yildiz, Common xed points in intuitionistic fuzzy
metric spaces, Journal of Applied Mathematics and Computing, 22(1-2) (2006), 411{424.
[24] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338{353.