[1] T. Allahviranloo and M. Afshar Kermani, Numerical methods for fuzzy linear partial dif-
ferential equations under new definition for derivative, Iranian Journal Fuzzy Systems, 7(3)
(2010), 33{50.
[2] S. Arshed, On existence and uniqueness of solution of fuzzy fractional differential equations,
Iranian Journal Fuzzy Systems, 10(6) (2013), 137{151.
[3] B. Bede and S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued func-
tions with applications to fuzzy differential equations, Fuzzy Sets Syst., 151(4) (2005), 581{
599.
[4] B. Bede and L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets
and Systems, 230(5) (2013), 119{141.
[5] K. J. Chung and L. E. Cardenas-Barron, The simplied solution procedure for deteriorating
items under stock-dependent demand and two-level trade credit in the supply chain manage-
ment, Appl. Math. Model., 37(7) (2013), 4653{4660.
[6] K. J. Chung, L. E. Cardenas-Barron and P. S. Ting, An inventory model with non-instan-
taneous receipt and exponentially deteriorating items for an integrated three layer supply
chain system under two levels of trade credit, Int. J. Prod. Eco., 155(5) (2014), 310{317.
[7] S. C. Chen, L. E. Cardenas-Barron and J. T. Teng, Retailer's economic order quantity when
the supplier offers conditionally permissible delay in payments link to order quantity, Int. J.
Prod. Econ., 155(3) (2014), 284{291.
[8] L. E. Cardenas-Barron, K. J. Chung and G. Trevio-Garza, Celebrating a century of the
economic order quantity model in honor of For Whitman Harris, Int. J. Prod. Econ., 155(7)
(2014), 1{7.
[9] B. Das, N. K. Mahapatra and M. Maiti, Initial-valued first order fuzzy differential equation
in Bi-level inventory model with fuzzy demand, Math. Model. Anal., 13(4) (2008), 493{512.
[10] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic Press,
New York, 1980.
[11] D. Dubois and H. Prade, Operations on fuzzy numbers, Int. J. Syst. Sci., 9(6) (1978), 613{
626.
[12] R. Ezzati, K. Maleknejad, S. Khezerloo and M. Khezerloo Convergence, Consistency and
stability in fuzzy differential equations, Iranian Journal Fuzzy Systems, 12(3) (2015), 95{
112.
[13] S. K. Goyal, Economic order quantity under conditions of permissible delay in payments, J.
Oper. Res. Soc., 36(4) (1985), 335{338.
[14] P. Guchhait, M. K. Maiti and M. Maiti, A production inventory model with fuzzy produc-
tion and demand using fuzzy differential equation: An interval compared genetic algorithm
approach, Eng. Appl. Artif. Intel., 26(7) (2013), 766{778.
[15] Y. F. Huang, Supply chain model for the Retailer's ordering policy under two levels of delay
payments derived algebraically, Opsearch, 44(8) (2007), 366{377.
[16] N. N. Karnik and J. M. Mendel, Centroid of a type-2 fuzzy set, Information Sciences, 132(6)
(2001), 195{220.
[17] A. Kandel and W. J. Byatt, Fuzzy differential equations. In Proceedings of the International
Conference on Cybernetics and Society, Tokyo, November 1978, 1213{1216.
[18] F. Liu, An efficient centroid type-reduction strategy for general type-2 fuzzy logic system,
Information Sciences, 178(7) (2008), 2224{2236.
[19] P. Majumder, U. K. Bera and M. Maiti, An EPQ model for two-warehouse in unremitting
release pattern with two level trade credit period concerning both supplier and retailer, Appl.
Math. Comput., 274(6) (2016), 430{458.
[20] M. Mizumoto and K. Tanaka, Fuzzy sets of type-2 under algebraic product and algebraic sum,
Fuzzy Sets and Systems, 5(3) (1981), 277{280.
[21] J. S. Martnez, R. I. John, D. Hissel and M. C. Pera, A survey-based type-2 fuzzy logic system
for energy management in hybrid electrical vehicles, Information Sciences, 190(9) (2012),
192{207.
[22] J. M. Mendel and R. I. John, Type-2 fuzzy sets made simple, IEEE Transactions on Fuzzy
Systems, 10(2) (2002), 307{315.
[23] M. K. Maiti and M. Maiti, Fuzzy inventory model with two warehouses under possibility
constraints, Fuzzy Sets Syst, 157(8) (2006), 52{73.
[24] S. M. Mousavi, S. Hajipour and N. N. Aalikar, A multi-product multi-period inventory
control problem under inflation and discount: a parameter-tuned particle swarm optimization
algorithm, Int. J. Adv. Manuf. Tech., 33(4) (2013), 1{18.
[25] S. M. Mousavi, J. Sadeghi, S. T. A. Niaki, N. Alikar, A. Bahreininejad and H. Metselaar,
Two parameter-tuned meta-heuristics for a discounted inventory control problem in a fuzzy
environment, Information Sciences, 276(8) (2014), 42{62.
[26] S. M. Mousavi, J. Sadeghi, S. T. A. Niaki and M. Tavana, A bi-objective inventory optimiza-
tion model under inflation and discount using tuned Pareto-based algorithms: NSGA-II,
NRGA, and MOPSO, Applied Soft Computing, 43(6) (2016), 57{72.
[27] S. M. Mousavi, A. Bahreininejad, N. Musa and F. Yusof, A modified particle swarm opti-
mization for solving the integrated location and inventory control problems in a two-echelon
supply chain network, J. intell. Manuf., 23(4) (2014), 1{16.
[28] L. Y. Ouyang, C. H. Hob and C. H. Su, An optimization approach for joint pricing and
ordering problem in an integrated inventory system with order-size dependent trade credit,
Comput. Indust. Eng., 57(7) (2009), 920{930.
[29] S. Pal, M. K. Maiti and M. Maiti, An EPQ model with price discounted promotional demand
in an imprecise planning horizon via Genetic Algorithm, Comput. Indust. Eng., 57(6) (2009),
181{187.
[30] S. H. R. Pasandideh, S. T. A. Niaki and S. M. Mousavi, Two metaheuristics to solve a multi-
item multiperiod inventory control problem under storage constraint and discounts, Int. J.
Adv. Manuf. Technol., 69(7) (2013), 1{14.
[31] T. Pathinathan and K. Ponnivalavan, Pentagonal fuzzy numbers, Int. J. Comput. Algm.,
3(4) (2014), 1003{1005.
[32] R. Qin, Y. K. Liu and Z. Q. Liu, Methods of critical value reduction for type-2 fuzzy variables
and their applications, J. Comput. Appl. Math., 235(7) (2011), 1454{1481.
[33] S. Sharan, S. P. Tiwary and V. K. Yadav, Interval type-2 fuzzy rough sets and interval type-2
fuzzy closure spaces, Iranian Journal of Fuzzy Systems, 12(3) (2015), 113{125.
[34] N. H. Shah and L. E. Cardenas-Barron, Retailer's decision for ordering and credit policies
for deteriorating items when a supplier offers order-linked credit period or cash discount,
Appl. Math. Comp., 259(5) (2015), 569{578.
[35] L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions
and interval differential equations, Nonlinear Analysis, 71(4) (2009), 1311{1328.
[36] B. Sarkar, S. Saren and L. E. Cardenas-Barron, An inventory model with trade-credit policy
and variable deterioration for fixed lifetime products, Ann. Oper. Res., 229(1) (2015), 677{
702.
[37] S. Tiwari, L. E. Cardenas-Barron, A. Khanna and C. K. Jaggi, Impact of trade credit and
inflation on retailer's ordering policies for non-instantaneous deteriorating items in a two-
warehouse environment, Int. J. Prod. Econ., 176(3) (2016), 154{169.
[38] J. Wu, F. B. Al-khateeb, J. T. Teng and L. E. Cardenas-Barron, Inventory models for dete-
riorating items with maximum lifetime under downstream partial trade credits to credit-risk
customers by discounted cash-flow analysis, Int. J. Prod. Eco., 171(1) (2016), 105{115.
[39] J. Wu, L. Y. Ouyang, L. E. Cardenas-Barron and S. K. Goyal, Optimal credit period and lot
size for deteriorating items with expiration dates under two-level trade credit financing, Eur.
J. Oper. Res., 237(3) (2014), 898{908.
[40] P. S. You, S. Ikuta and Y. C. Hsieh, Optimal ordering and pricing policy for an inventory
system with trial periods, Appl. Math. Model., 34(4) (2010), 3179{3188.
[41] L. A. Zadeh, The concept of a linguistic variable and its application to approximate resoning
I, Information Sciences, 8(2) (1975), 199{249.
[42] L. A. Zadeh, The concept of a linguistic variable and its application to approximate resoning
II, Information Sciences, 8(2) (1975), 301{357.