[1] S. Abbasbandy, E. Babolian and M. Alavi, Numerical method for solving linear Fredholm
fuzzy integral equations of the second kind, Chaos Solitons Fractals, 31(1) (2007), 138-146.
[2] R. P. Agrawal, D. Oregan and V. Lakshmikantham, Fuzzy Volterra Integral Equations: A
Stacking Theorem Approach, Applicable Analysis: An International Journal, 83(5) (2004),
521-532.
[3] G. A. Anastassiou, Fuzzy Mathematics: Approximation Theory, Springer, Berlin (2010).
[4] E. Babolian, H. Sadeghi Goghary and S. Abbasbandy, Numerical solution of linear Fredholm
fuzzy integral equations of the second kind by Adomian method, Applied Mathematics and
Computation, 161 (2005), 733-744.
[5] M. Baghmisheh and R. Ezzati, Numerical solution of nonlinear fuzzy Fredholm integral equa-
tions of the second kind using hybrid of block-pulse functions and Taylor series, Advances in
Difference Equations, DOI 10.1186/s13662-015-0389-7, 51 (2015), 1-15.
[6] K. Balachandran and P. Prakash, Existence of solutions of nonlinear fuzzy Volterra- Fredholm
integral equations, Indian Journal of Pure and Applied Mathematics, 33 (2002), 329-343.
[7] K. Balachandran and K. Kanagarajan, Existence of solutions of general nonlinear fuzzy
Volterra-Fredholm integral equations, Journal of Applied Mathematics and Stochastic Anal-
ysis, 3 (2005), 333-343.
[8] B. Bede and S. G. Gal, Quadrature rules for integrals of fuzzy-number-valued functions, Fuzzy
Sets and Systems, 145 (2004), 359-380.
[9] A. M. Bica, Error estimation in the approximation of the solution of nonlinear fuzzy Fredholm
integral equations, Information Science, 178 (2008), 1279-1292.
[10] A. M. Bica and C. Popescu, Approximating the solution of nonlinear Hammerstein fuzzy
integral equations, Fuzzy Sets and Systems, 245 (2014), 1-17.
[11] A. M. Bica and C. Popescu, Fuzzy trapezoidal cubature rule and application to two-
dimensional fuzzy Fredholm integral equations, Soft Computing, 21(5) (2017), 1229-1243.
[12] A. M. Bica, S. Ziari, Iterative numerical method for solving fuzzy Volterra linear integral
equations in two dimensions, Soft Computing, 21(5) (2017), 1097-1108.
[13] P. Diamond, Theory and applications of fuzzy Volterra integral equations, IEEE Transactions
on Fuzzy Systems, 10(1) (2002), 97-102.
[14] D. Dubois and H. Prade, Fuzzy numbers: an overview, In: Analysis of Fuzzy Information,
CRC Press, BocaRaton, (1) (1987), 3-39.
[15] R. Ezzati and S. Ziari, Numerical solution and error estimation of fuzzy Fredholm integral
equation using fuzzy Bernstein polynomials, Aust. J. Basic Appl. Sci., 5(9) (2011), 2072-2082.
[16] R. Ezzati and S. Ziari, Numerical solution of nonlinear fuzzy Fredholm integral equations
using iterative method, Applied Mathematics and Computation, 225 (2013), 33-42.
[17] R. Ezzati and S. Ziari, Numerical solution of two-dimensional fuzzy Fredholm integral equa-
tions of the second kind using fuzzy bivariate Bernstein polynomials, Int. J. Fuzzy Systems,
15(1) (2013), 84-89.
[18] R. Ezzati and S. M. Sadatrasoul, Application of bivariate fuzzy Bernstein polynomials to
solve two-dimensional fuzzy integral equations, Soft Computing, 21(14) (2017), 3879-3889.
[19] J. X. Fang and Q. Y. Xue, Some properties of the space fuzzy-valued continuous functions
on a compact set, Fuzzy Sets Systems, 160 (2009), 1620-1631.
[20] M. A. Fariborzi Araghi and N. Parandin, Numerical solution of fuzzy Fredholm integral
equations by the Lagrange interpolation based on the extension principle, Soft Computing,
15 (2011), 2449-2456.
[21] M. Friedman, M. Ma and A. Kandel, Numerical solutions of fuzzy differential and integral
equations, Fuzzy Sets and Systems, 106 (1999), 35-48.
[22] M. Friedman, M. Ma and A. Kandel, Solutions to fuzzy integral equations with arbitrary
kernels, International Journal of Approximate Reasoning, 20 (1999), 249-262.
[23] S. G. Gal, Approximation theory in fuzzy setting, In: Anastassiou, GA (ed.) Handbook of
Analytic-Computational Methods in Applied Mathematics, Chapman & Hall/CRC Press,
Boca Raton, (2000), 617-666.
[24] R. Goetschel and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986),
31-43.
[25] L. T. Gomes, L. C. Barros and B. Bede, Fuzzy Differential Equations in Various Approaches,
Springer (2015).
[26] Z. H. Jiang and W. Schanfelberger, Block-Pulse Functions and Their Applications in Control
Systems, Springer, Berlin (1992).
[27] C. V. Negoita and D. A. Ralescu, Applications of Fuzzy Sets to Systems Analysis, Wiley,
New York (1975).
[28] J. Y. Park and H. K. Han, Existence and uniqueness theorem for a solution of fuzzy Volterra
integral equations, Fuzzy Sets and Systems, 105 (1999), 481-488.
[29] J. Y. Park and J. U. Jeong, On the existence and uniqueness of solutions of fuzzy Volttera-
Fredholm integral equations, Fuzzy Sets and Systems, 115 (2000), 425-431.
[30] S. M. Sadatrasoul and R. Ezzati, Iterative method for numerical solution of two-dimensional
nonlinear fuzzy integral equations, Fuzzy Sets and Systems, 280 (2015), 91-106.
[31] S. M. Sadatrasoul and R. Ezzati, Numerical solution of two-dimensional nonlinear Hammer-
stein fuzzy integral equations based on optimal fuzzy quadrature formula, Journal of Compu-
tational and Applied Mathematics, 292 (2016), 430-446.
[32] P. V. Subrahmanyam and S. K. Sudarsanam, A note on fuzzy Volterra integral equations,
Fuzzy Sets and Systems, 81 (1996), 237-240.
[33] C.Wu, S. Song and H.Wang, On the basic solutions to the generalized fuzzy integral equation,
Fuzzy Sets and Systems, 95 (1998), 255-260.
[34] C. Wu and Z. Gong, On Henstock integral of fuzzy-number-valued functions (I), Fuzzy Sets
and Systems, 120 (2001), 523-532.
[35] S. Ziari, R. Ezzati and S. Abbasbandy, Numerical solution of linear fuzzy Fredholm inte-
gral equations of the second kind using fuzzy Haar wavelet, In: Advances in Computational
Intelligence. Communications in Computer and Information Science, 299 (2012), 79-89.
[36] S. Ziari and A. M. Bica, New error estimate in the iterative numerical method for nonlinear
fuzzy Hammerstein-Fredholm integral equations, Fuzzy Sets and Systems, 295 (2016), 136-
152.