[1] H. Agahi, R. Mesiar, Y. Ouyang, E. Pap and M. Strboja Berwald type inequality for Sugeno
integral, Appl. Math. Comput., 217(8) (2010), 4100{4108.
[2] H. Agahi, Y. Ouyang, R. Mesiar, E. Pap and M. ^Strboja, Holder and Minkowski type in-
equalities for pseudo-integral, Appl. Math. Comput., 217(21) (2011), 8630{8639.
[3] R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl., 12 (1965), 1{12.
[4] A. Aviles, G. Plebanek and J. Rodriguez, The McShane integral in weakly compactly gener-
ated spaces, J. Funct. Anal., 259(11) (2010), 2776{2792.
[5] G. Birkhoff, Integration of functions with values in a Banach space, Trans. Amer. Math.
Soc., 38(2) (1935), 357{378.
[6] A. Boccuto and A. R. Sambucini, A note on comparison between Birkhoff and Mc Shane
integrals for multifunctions, Real Analysis Exchange, 37(2) (2012), 3{15.
[7] A. Boccuto and A. R. Sambucini, A McShane integral for multifunctions, J. Concr. Appl.
Math., 2(4) (2004), 307{325.
[8] A. Boccuto, D. Candeloro and A. R. Sambucini, Henstock multivalued integrability in Ba-
nach lattices with respect to pointwise non atomic measures, Rendiconti Lincei Matematica
e Applicazioni, 26(4) (2015), 363{383.
[9] G. Bykzkan and D. Duan, Choquet integral based aggregation approach to software develop-
ment risk assessment, Inform. Sci., 180(3) (2010), 441{451.
[10] H. Bustince, J. Fernandez, R. Mesiar and J. Kalicka;, Discrete interval-valued Choquet
integral, Proceedings of the 6th International Summer School on Aggregation Operators(
AGOP)(2011), 23{27.
[11] D. Candeloro, A. Croitoru, A. Gavrilut and A. R. Sambucini, Atomicity related to non-
additive integrability, Rend. Circolo Matem. Palermo, 65(3) (2016), 435{449.
[12] B. Cascales and J. Rodriguez, Birkhoff integral for multi-valued functions, J. Math. Anal.
Appl., 297 (2004), 540{560.
[13] A. Croitoru and A. Gavrilut, Comparison between Birkhoff and Gould integral, Mediterr. J.
Math., 12 (2015), 329{347.
[14] A. Croitoru, A. Gavrilut and A. Iosif, Birkhoff weak integrability of multifunctions, International
Journal of Pure Mathematics, 2 (2015), 47{54.
[15] A. Croitoru and N. Mastorakis, Estimations, convergences and comparisons on fuzzy integrals
of Sugeno, Choquet and Gould type, Proceedings of the 2014 IEEE International Conference
on Fuzzy Systems (FUZ-IEEE)(2014), DOI 10.1109/FUZZIEEE.2014.689.1590, (2014), 1205{
1212.
[16] A. P. Dempster, Upper and lower probabilities induced by a multivalued mapping, Ann. Math.
Statist., 38 (1967), 325{339.
[17] A. Dinghas, Zum Minkowskischen Integralbegriff abgeschlossener Mengen, Math. Zeit., DOI:
10.1007/BF01186606, 66 (1956), 173{188.
[18] L. Drewnowski, Topological rings of sets, continuous set functions, integration, I, II,III, Bull.
Acad. Polon. Sci. Ser. Math. Astron. Phys., 20 (1972), 277{286.
[19] A. Gavrilut and A. Petcu, A Gould type integral with respect to a submeasure, An. St. Univ.
Al. I. Cuza Iasi, 53(2) (2007), 351{368.
[20] A. Gavrilut and A. Petcu, Some properties of the Gould type integral with respect to a
submeasure, Bul. Inst. Politehnic din Iasi, Sectia Mat. Mec. Teor. Fiz., 53(57)(5) (2007),
121{130.
[21] A. Gavrilut, A Gould type integral with respect to a multisubmeasure, Math. Slovaca, 58
(2008), 43{62.
[22] A. Gavrilut, A generalized Gould type integral with respect to a multisubmeasure, Math.
Slovaca, 60 (2010), 289{318.
[23] A. Gavrilut, Fuzzy Gould integrability on atoms, Iranian Journal of Fuzzy Systems, 8(3)
(2011), 113{124.
[24] A. Gavrilut, Remarks of monotone set-valued multifunctions, Inform. Sci., 259 (2014), 225{
230.
[25] A. Gavrilut, A. Iosif and A. Croitoru, The Gould integral in Banach lattices, Positivity, 19
(2015), 65-82.
[26] M. Grabisch, J. L. Marichal, R. Mesiar and E. Pap, Aggregation functions, Cambridge University
Press, 127, 2009.
[27] G. G. Gould, On integration of vector-valued measures, Proc. London Math. Soc., 15 (1965),
193{225.
[28] C. Guo and D. Zhang, On set-valued fuzzy measures, Inform. Sci., 160 (2004), 13{25.
[29] S. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, vol. I, Theory. Mathematics
and its Applications, Kluwer Academic Publishers, Dordrecht, 419 (1997).
[30] M. Hukuhara, Integration des applications mesurables dont la valuer est un compact convexe,
Funkcialaj Ekvacioj, 10 (1967), 205-223.
[31] L. C. Jang, A note on the monotone interval-valued set function dened by the interval-valued
Choquet integral, Commun. Korean Math. Soc., 22 (2007), 227{234.
[32] L. C. Jang, , A note on convergence properties of interval-valued capacity functionals and
Choquet integrals, Inform. Sci., 183 (2012) 151-158.
[33] L. C. Jang, Interval-valued Choquet integrals and their applications, J. Appl. Math. Comput.,
16 (2004), 429{445.
[34] L. C. Jang, On properties of the Choquet integral of interval-valued functions, J. Appl. Math.,
ID 492149, doi:10.1155/2011/492149, (2011).
[35] L. C. Jang, The application of interval-valued Choquet integrals in multicriteria decision aid,
J. Appl. Math. & Computing, 20(1-2) (2006), 549{556.
[36] L. S. Li and Z. Sheng, The fuzzy set-valued measures generated by fuzzy random variables,
Fuzzy Sets and Systems, 97 (1998), 203{209.
[37] E. Pap, Null-additive Set Functions, Kluwer Academic Publishers, Dordrecht, 1995.
[38] A. Precupanu and A. Croitoru, A Gould type integral with respect to a multimeasure I/II,
An. St. Univ. "Al.I. Cuza" Iasi, 48 (2002), 165{200 / 49(2003), 183{207.
[39] A. Precupanu, A. Gavrilut and A. Croitoru, A fuzzy Gould type integral, Fuzzy Sets and
Systems, 161 (2010), 661{680.
[40] A. Precupanu and B. Satco, The Aumann-Gould integral, Mediterr. J. Math., 5 (2008), 429{
441.
[41] J. Sipos, Integral with respect to a pre-measure, Math. Slovaca, 29 (1979), 141{155.
[42] F. N. Sofian-Boca, Another Gould type integral with respect to a multisubmeasure, An. Stiint.
Univ. "Al.I. Cuza" Iasi, 57 (2011), 13{30.
[43] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, Princeton, 1976.
[44] N. Spaltenstein, A Denition of Integrals, J. Math. Anal. Appl., 195 (1995), 835{871.
[45] K. Weichselberger, The theory of interval-probability as a unifying concept for uncertainty,
Int. J. Approx. Reason., 24 (2000), 149{170.
[46] L. A. Zadeh, Probability measures of fuzzy events, J. Math. Anal. Appl., 23 (1968), 421{427.