[1] C. Alsina, M. J. Frank and B. Schweizer, Associative Functions, Triangular Norms and
Copulas, World Scientic, Hackensack, 2006.
[2] C. Alsina, R. B. Nelsen and B. Schweizer, On the characterization of a class of binary
operations on distribution functions, Statist. Probab. Letter, 17(2) (1993), 85{89.
[3] R. C. Archibald, Mathematics before the Greeks science, New Series, 71(1831) (1930), 109{
121.
[4] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87{96.
[5] B. Bassano and F. Spizzichino, Relations among univariate aging, bivariate aging and de-
pendence for exchangeable lifetimes, J. Multivariate Anal., 93 (2005), 313{339.
[6] G. Beliakov, A. Pradera and T. Calvo, Aggregation Functions: A Guide for Practitioners,
Springer, Berlin, Heidelberg, 2007.
[7] G. Beliakov, H. Bustince and T. Calvo, A Practical Guide to Averaging Functions, Springer,
Heidelberg, Berlin, 2016.
[8] P. S. Bullen, Handbook of Means and Their Inequalities, Springer Science & Business Media,
2003.
[9] H. Bustince, J. Fernandez, A. Kolesarova and R. Mesiar, Directional monotonicity of fusion
functions, European J. Oper. Res., 244 (2015), 300{308.
[10] H. Bustince, E. Barrenechea, J. Lafuente, R. Mesiar and A. Kolesarova, Ordered direc-
tionally monotone functions. Justification and application, IEEE Trans. Fuzzy Syst., doi.
10.1109/TFUZZ.2017.2769486, (2018).
[11] D. Butnariu and E. P. Klement, Triangular Norm-Based Measures and Games with Fuzzy
Coalitions, Kluwer, Dordrecht, 1993.
[12] T. Calvo, B. De Baets and J. Fodor, The functional equations of Frank and Alsina for
uninorms and nullnorms, Fuzzy Sets and Systems, 120(3) (2001), 385{394.
[13] T. Calvo, A. Kolesarova, M. Komornkova and R. Mesiar, Aggregation Operators: Properties,
Classes and Construction Methods, In: Aggregation Operators. New Trends and Applica-
tions, T. Calvo, G. Mayor, R. Mesiar, eds., Physica-Verlag, Heidelberg, (2002), 3{107.
[14] G. Deschrijver, E. Kerre, Triangular norms and related operators in L-fuzzy set theory, In:
Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, E.P. Klement,
R. Mesiar, eds., Elsevier, (2005), 231{259.
[15] D. Dubois and H. Prade, On the use of aggregation operations in information fusion pro-
cesses, Fuzzy Sets Systems, 142 (2004), 143-161.
[16] F. Durante and C. Sempi, Semicopulae, Kybernetika, 41 (2005), 315{328.
[17] F. Durante and C. Sempi, Principles of Copula Theory, CRC Press, Taylor & Francis Group,
2016.
[18] J. C. Fodor, R. R. Yager and A. Rybalov, Structure of uninorms, Int. J. Uncertainty, Fuzziness
and Knowledge-Based Systems, 5 (1997), 411{427.
[19] C. Genest, J. J. Quesada Molina, J. A. Rodriguez Lallena and C. Sempi, A characterization
of quasi-copulas, J. Multivariate Anal., 69 (1999), 193{205.
[20] M. Grabisch, k-order additive discrete fuzzy measures and their representation, Fuzzy Sets
and Systems, 92 (1997), 167{189.
[21] J. A. Goguen, The logic of inexact concepts, Synthese, 19 (1968), 325{373.
[22] M. Grabisch, J. L. Marichal, R. Mesiar and E. Pap, Aggregation Functions, Cambridge
University Press, Cambridge, 2009.
[23] P. Hajek, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, 1998.
[24] R. Halas, R. Mesiar and J. Pocs, A new characterization of the discrete Sugeno integral,
Inform. Fusion, 29 (2016), 84{86.
[25] H. Joe, Dependence Modeling with Copulas, Chapman & Hall/CRC, 2014.
[26] E. P. Klement, R. Mesiar and E. Pap, Triangular Norms, Kluwer Academic Publishers,
Dordrecht, 2000.
[27] G. J. Klir and T. A. Folger, Fuzzy Sets, Uncertainty and Information, Prentice Hall, Hemel
Hempstead, 1988.
[28] A. Kolesarova and M. Komornkova, Triangular norm-based iterative aggregation and com-
pensatory operators, Fuzzy Sets and Systems, 104 (1999), 109{120.
[29] A. Kolesarova, J. Li and R. Mesiar, k-additive aggegation functions and their characteriza-
tion, European J. Operat. Res., 265 (2018), 985{992.
[30] M. Komornkova and R. Mesiar, Aggregation functions on bounded partially ordered sets and
their classification, Fuzzy Sets and Systems, 175(1) (2011), 48{56.
[31] J. Lafuente, M. Sesma-Sara, A. Roldan, R. Mesiar and H. Bustince, Strengthened ordered
directionally monotone functions. Links between the different notions of monotonicity, Fuzzy
Sets and Sytems, (2017), submitted.
[32] G. Lucca, J. Sanz, G. P. Dimuro, B. Bedregal, R. Mesiar, A. Kolesarova and H. Bustince,
Pre-aggregation functions: construction and an application, IEEE Trans. Fuzzy Syst., 24
(2016), 260{272.
[33] M. K. Luhandjula, Compensatory operators in fuzzy linear programming with multiple ob-
jectives, Fuzzy Sets and Systems, 8 (1982), 245{252.
[34] J. L. Marichal, Tolerant or intolerant character of interacting criteria in aggregation by the
Choquet integral, European J. Oper. Res., 155(3) (2004), 771{791.
[35] R. Mesiar and A. Kolesarova, Aggregation Functions in Fuzzy Set Theory: History and some
Recent Advances, 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), (2018),
327-336.
[36] R. Mesiar, A. Kolesarova, H. Bustince and J. Fernandez, Dualities in the class of extended
Boolean functions, Fuzzy Sets and Systems, 332 (2018), 78{92.
[37] R. Mesiar and A. Kolesarova, k-maxitivity of order-preserving homomorphisms of lattices,
Proc. AGOP 2017: Aggregation Functions in Theory and in Practice, a part of the Advances
in Intelligent Systems and Computing, 581 (2018), 64{70.
[38] R. Mesiar and A. Kolesarova, k-maxitive aggregation functions, Fuzzy Sets and Systems,
DOI: 10.1016/j.fss.2017.12.016, (2017).
[39] R. Mesiar, A. Kolesarova and A. Stupnanova, Quo vadis aggregation?, Int. J. General Sys-
tems, 47(2) (2018), 97{117.
[40] M. Minarova, D. Paternain, A. Jurio, J. Ruiz-Aranguren, Z. Takac and H. Bustince, Mod-
ifying the gravitional search algorithm: A functional study, Inform. Sci., 430-431 (2018),
87{103.
[41] R. B. Nelsen, Introduction to Copulas, Springer Series in Statistics, Springer-Verlag New
York, 2006.
[42] J. G. P. Nicod, A reduction the in the number of primitive propositions of logic, Proc. of the
Cambridge Philosophical Society, 19 (1917), 32{41.
[43] G. Owen, Multilinear extensions of games, In: The Shapley value. Essays in Honour of Lloyd
S. Shapley, A. E. Roth, ed., Cambridge University Press, (1988), 139{151.
[44] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10(1) (1960), 313{334.
[45] B. Schweizer and A. Sklar, Probabilistioc Metric Spaces, Elsevier North Holland, New York,
1983.
[46] H. M. Sheffer, A set of ve independent postulates for Boolean algebras with applications to
logical constants, Trans. Amer. Math. Soc., 14 (1913), 481-488.
[47] A. Sklar, Fonctions de repartition a n dimensions et leurs marges, Publ. Inst. Statist. Univ.
Paris, 8 (1959), 229{231.
[48] Z. Takac, M. Minarova, J. Montero, E. Barrenechea, J. Fernandez and H. Bustince, Interval-
valued fuzzy strong S-subsethood measures, interval-entropy and P-interval-entropy, Inform.
Sci., 432 (2018), 97-115.
[49] V. Torra and Y. Narukawa, Modeling Decisions: Information Fusion and Aggregation Op-
erators, Springer, Berlin, Heidelberg, 2007.
[50] Z. Wang and G. J. Klir, Generalized Measure Theory, Springer Verlag, Boston, 2009.
[51] T. Wilkin and G. Beliakov, Weakly monotone aggregation functions, Int. J. Intelligent Syst.,
30 ( 2015), 144{165.
[52] R. R. Yager, Aggregation operators and fuzzy systems modeling, Fuzzy Sets and Systems,
67(2) (1994), 129{145.
[53] R. R. Yager, Uninorms in fuzzy systems modeling, Fuzzy Sets and Systems, 122(1) (2001),
167{175.
[54] R. R. Yager and D. P. Filev, Essentials of Fuzzy Modeling and Control, Wiley, 1994.
[55] R. R. Yager and J. Kacprzyk, The Ordered Weighted Averaging Operators Theory and
Applications, Kluwer Academic Publishers, Boston, 1997.
[56] L. A. Zadeh, Fuzzy sets, Inform. and Control, 8(3) (1965), 338{353.
[57] H. J. Zimmermann and P. Zysno, Latent connectives in human decision making, Fuzzy Sets
and Systems, 4 (1980), 37{51.