SOME INTUITIONISTIC FUZZY CONGRUENCES

Document Type : Research Paper

Authors

1 Division of Mathematics and Informational Statistics, and Institute of Basic Natural Science, Wonkwang University, Iksan, Chonbuk, Korea 570- 749

2 Dept. of Mathematics Education, Woosuk University, Hujong-Ri Samrae-Eup, Wanju-kun Chonbuk, Korea 565-701

Abstract

First, we introduce the concept of intuitionistic fuzzy group congruence
and we obtain the characterizations of intuitionistic fuzzy group congruences
on an inverse semigroup and a T^{*}-pure semigroup, respectively. Also,
we study some properties of intuitionistic fuzzy group congruence. Next, we
introduce the notion of intuitionistic fuzzy semilattice congruence and we give
the characterization of intuitionistic fuzzy semilattice congruence on a T^{*}-pure
semigroup. Finally, we introduce the concept of intuitionistic fuzzy normal
congruence and we prove that (IFNC(E_{S}), $\cap$, $\vee$) is a complete lattice. And
we find the greatest intuitionistic fuzzy normal congruence containing an intuitionistic
fuzzy congruence on E_{S}.

Keywords


[1] K. T. Atanassov, Intuitionistic fuzzy sets, in :V.Sgurev. Ed., VII ITKR0 s Session, Sofia, June
1983 Central Sci. and Techn, Library, Bul. Academy of Sciences, 1984.
[2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
[3] B. Banerjee and D. Kr. Basnet, Intuitionistic fuzzy subrings and ideals, Journal of Fuzzy
Math., 11 (1) (2003), 139-155.
[4] G. Birkhoff, Lattice Theory, A.M.S.Colloquium Publication, Vol XXV, 1967.
[5] R. Biswas, Intuitionistic fuzzy subgroups, Mathematical Forum, X (1989), 37-46.
[6] H. Bustince and P. Burillo, Structures on intuitionistic fuzzy relations, Fuzzy Sets and Systems,
78 (78)(1996), 293-303
[7] D. C¸ oker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems,
88 (1997), 81-89.
[8] D. C¸ oker and A.Haydar Es, On fuzzy compactness in intuitionistic fuzzy topological spaces,
Journal of Fuzzy Math., 3 (1995), 899-909.
[9] P. Das, Lattice of fuzzy congruences in inverse semigroups, Fuzzy Sets and Systems, 91 (1997),
399-408.
[10] G. Deschrijver and E. E. Kerre, On the composition of intuitionistic fuzzy relations, Fuzzy
Sets and Systems, 136 (2003), 333-361.
[11] H. G¨ur¸cay, D. C¸ oker and A. Haydar Es, On fuzzy continuity in intuitionistic fuzzy topological
spaces, Journal of Fuzzy Math., 5 (1997), 365-378.
[12] J. M Howie, An Introduction to Semigroup Theory Academic Press, NewYork, 1976.
[13] K. Hur, S. Y. Jang and H. W. Kang, Intuitionistic fuzzy subgroupids, International Journal
of Fuzzy Logic and Intelligent Systems, 3 (1) (2003), 72-77.
[14] K. Hur, H. W. Kang and H. K. Song, Intuitionistic fuzzy subgroups and subrings, Honam
Mathematical Journal, 25 (2) (2003), 19-41.
[15] K. Hur, S. Y. Jang and H. W. Kang, Intuitionistic fuzzy congruences on a lattice, Journal
of Appl.Math.and Computing, 18(2005), Journal of Appl.Math. Computing, 18 (1-2) (2005),
465-486.
[16] K. Hur, Y. B. Jun and J. H. Ryou, Intuitionistic fuzzy topological groups, Honam Math.
Journal, 26 (2) (2004), 163-192.
[17] K. Hur, J. H. Kim and J. H. Ryou, Intuitionistic fuzzy topological spaces, Journal of Korea
Soc, Math. Educ. Ser. B: Pure Appl. Math., 11 (3) (2004), 243-265.
[18] K. Hur, S. Y. Jang and Y. B. Jun, Intuitionistic fuzzy congruences, Far East Journal of
Math.Sci., 17 (1) (2005), 1-29.
[19] K. Hur, S. Y. Jang and Y. S. Ahn, Intuitionistic fuzzy equivalence relations, Honam Math.
Journal,27 (2) (2005), 159-177.
[20] N. Kuroki, On a weakly idempotent semigroup in which the idempotents are central, Joetsu,
J. Math, Educ., 2 (1987), 19-28.
[21] N. Kuroki,T-pure Archimedean semigroups, Comment. Math. Univ. St. Pauli, 31 (1982),
115-128.
[22] N. Kuroki, Fuzzy congruence and fuzzy normal subgroups, Inform.Sci., 66 (1992), 235-243.
[23] N. Kuroki, Fuzzy congruences on T-pure semigroups, Inform.Sci., 84 (1995), 239-246.
[24] N. Kuroki, Fuzzy congruences on inverse semigroups, Fuzzy Sets and Systems, 87 (1997),
335-340.
[25] S. J. Lee and E. P. Lee, The category of intuitionistic fuzzy topological spaces, Bull. Korean
Math. Soc., 37 (1) (2000), 63-76.
[26] M. Samhan, Fuzzy congruences on semigroups, Inform.Sci., 74 (1993), 165-175.
[27] T. Yijia, Fuzzy congruences on a regular semigroup, Fuzzy sets and Systems, 117 (2001),
447-453.
[28] L. A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), 338-353.