[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and A. I. Verkamo, Fast discovery of association rules,
In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Editors.) Advances in Knowledge
Discovery and Data Mining, AAAI Press, (1996), 307-328.
[2] R. Agrawal, and R. Srikant, Fast algorithms for mining association rules, Proc. of 20th International
Conference on Very Large Data Bases, (1994), 487-499.
[3] Richardo Baeza-Yates and Berthier Ribeiro-Neto, Modern information retrieval, New York, ACM Press,
Addison-Wesley, 1999.
[4] L. B. Booker, D. E. Goldberg and J. H. Holland, Classifier systems and genetic algorithms, Artificial
Intelligence, 40 (1989), 235-282.
[5] L. Castillo, A. Gonzanlez and R. Perez, Including a simplicity criterion in the selection of the best rule in
a genetic fuzzy learning algorithm, Fuzzy Sets and Systems, 120 (2) (2001), 309-321.
[6] L. Castro, J. J. Castro-Schez and J. M. Zurita, Use of a fuzzy machine learning technique in the knowledge
acquisition process, Fuzzy Sets and Systems, 123 (3) ( 2001), 307-320.
[7] S. M. Chen and C. H. Yu, A new method to generate fuzzy rules from training instances for handling
classification problems, Cybernetics and Systems, 34 (2003), 217-232.
[8] O. Cordon, F. Herrera, F. Hoffman and L. Magdalena, Genetic Fuzzy Systems, World Scientific,
2001.
[9] K. A. De Jong, W. M. Spears and F. D. Gordon, Using genetic algorithm for concept learning,
Machine Learning, 13 (1993), 161-188.
[10] P. A. Devijver and J. Kittler, Pattern Recognition: A statistical Approach, Englewood Cliffs: Prentice
Hall, 1982.
[11] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Advances in Knowledge Discovery
and Data Mining, AAAI/MIT Press, 1996.
[12] A. Gonzalez and R. Perez, Completeness and consistency conditions for learning fuzzy rules, Fuzzy Sets
and Systems, 96 (1998), 37–51.
[13] A. Gonzanlez and R. Perez, SLAVE: A genetic learning system based on an iterative approach, IEEE
Trans. On Fuzzy Systems, 7 (2) (1999), 176-191.
[14] F. Herrera, M. Lozano and J. L. Verdegay, Generating rules from examples using genetic algorithms.
Fuzzy Logic and Soft Computing, Word Scientific, (1995), 11-20.
[15] J. H. Holland and Escaping Britleness: The possibilities of general purpose learning algorithms
applied to parallel rule-based systems, Machine Learning: An AI Approach, Vol. 2, Morgan-Kaufmann,
(1986), 593-623.
[16] H. Ishibuchi and T. Yamaoto, Comparison of heuristic criteria for fuzzy rule selection in
classification problems, Fuzzy Optimization and Decision Making, 3 (2) (2004), 119-139.
[17] H. Ishibuchi, T. Yamamoto and T. Nakashima, Fuzzy data mining: Effect of fuzzy discretization, Proc. of
1st IEEE International Conference on Data Mining, (2001), 241-248.
[18] C. Z. Janikow, A knowledge intensive genetic algorithm for supervised learning, Machine
Learning , 13 (1993), 198-228.
[19] D. E. Kraft and A. Bookstein, Evaluation of information retrieval system: A decision theory approach,
Journal of the American Society for Information Science, 29 (1978), 31-40.
[20] D. J. Newman and S. Hettich, C.L. Blake and C.J. Merz, (1998). UCI Repository of machine learning
databases [http://www.ics.uci.edu/~mlearn/MLRepository.html], Irvine, CA: University of California,
Department of Information and Computer Science.
[21] J. A. Roubos and M. Setnes, Compact fuzzy models through complexity reduction and evolutionary
optimization. In FUZZ-IEEE, San Antonio, USA, (2000), 762-767.
[22] J. A. Roubos, M. Setnes and J. Abonyi, Learning fuzzy classification rules from data, Developments in
Soft Computing, In John, R. And Birkenhead, R. (Editors), Springer - Verlag Berlin/Heidelberg,
(2001), 108-115.
[23] M. Setnes, R. Babuska, U. Kaymak and H. R. van Nauta Lemke, Similarity measures in fuzzy rule base
simplification, IEEE Trans. SMC-B, 28 (1998), 376-386.
[24] S. F. Smith, A learning system based on genetic adaptive algorithms, PhD Thesis, University of
Pittsburgh, 1980.
[25] C. J. Van Rijsbergen, Information Retrieval, Butterworths, 1979.
[26] G. Venturini, SIA: A Supervised Inductive Algorithm with Genetic Search for Learning Attributes
based Concepts. European Conference on Machine Learning, (1993), 280-296.
[27] L. X. Wang and J. M. Mendel, Generating fuzzy rules by learning from examples, IEEE Trans. Syst.,
Man, Cybern., 22 (6) (1992), 1414-1427.