[1] M. Akram, W. A. Dudek, Intuitionistic fuzzy hypergraphs with applications , Information Sciences, 218 (2013), 182-193.
[2] M. Akram, W. A. Dudek, Regular bipolar fuzzy graphs , Neural Computing and Applications, 1 (2011), 1-9.
[3] M. Akram, Neha Waseem, Wieslaw A. Dudek, Certain types of edge m-polar fuzzy graphs, Iranian Journal of fuzzy systems, 14(4) (2017), 27-50.
[4] K. R. Bhutani, A. Rosenfeld, Geodesics in fuzzy graphs, Electronic Notes in Discrete Mathematics, 15 (2013), 51-54.
[5] K. R. Bhutani, A. Rosenfeld, Strong arcs in fuzzy graphs, Information Sciences, 152 (2003), 19-322.
[6] T. Dinesh, A study on graph structures, incidence algebras and their fuzzy analogues, Ph. D. Thesis, Kannur University,
Kerala, India, 2012.
[7] T. Dinesh, Fuzzy incidence graph-an introduction, Advances in Fuzzy Sets and Systems, 21(1) (2016), 33-48.
[8] S. Mathew, J. N. Mordeson, Connectivity concepts in fuzzy incidence graphs, Information Sciences, 382(383) (2017), 326-333.
[9] S. Mathew, J. N. Mordeson, Davender S Malik, Fuzzy Graph Theory, Springer, New York, 2018.
[10] S. Mathew, M. S. Sunitha, Strongest strong cycles and θ-fuzzy graphs, IEEE Transactions on Fuzzy Systems, 21(6) (2013), 1096-1104.
[11] S. Mathew, M. S. Sunitha, Types of arcs in a fuzzy graph, Information Sciences, 179(11) (2009), 1760-1768.
[12] J. N. Mordeson, Fuzzy incidence graphs, Advances in Fuzzy Sets and Systems, 21(2) (2016), 1-13.
[13] J. N. Mordeson, P. S. Nair, Fuzzy Graphs and Fuzzy Hypergraphs, New York, Physica-Verlag, Heidelberg, Germany, 2000.
[14] J. N. Mordeson, P. S. Nair, Fuzzy Mathematics, Physica-Verlag, Heidelberg, Germany, 2001.
[15] J. N. Mordeson, S. Mathew, Fuzzy endnodes in fuzzy incidence graphs, New Mathematics and Natural Computation, Special issue: Human Trafficking, 13(3) (2017), 13-20.
[16] J. N. Mordeson, S. Mathew, Human trafficking: Source, transit, destination, designations, New Mathematics and Natural Computation, Special issue: Human Trafficking, 13(3) (2017), 209-218.
[17] J. N. Mordeson, S. Mathew, Local look at human trafficking, New Mathematics and Natural Computation, Special issue: Human Trafficking, 13(3) (2017), 327-340.
[18] J. N. Mordeson, S. Mathew, D. Malik, Fuzzy Graph Theory with Applications to Human trafficking, Springer 2018.
[19] A. Rosenfeld, Fuzzy Graphs, In: L. A. Zadeh, K. S. Fu, and M. Shimura (Eds.), Fuzzy Sets and their Applications, Academic Press, 1975, 77-95.
[20] M. Sarwar, M. Akram, Novel applications of m-polar fuzzy concept lattice, New Mathematics and Natural Computation, 13(3) (2017), 196-222.
[21] M. S. Sunitha, A. Vijayakumar, A characterization of fuzzy trees, Information Sciences, 113 (1999), 293-300.
[22] M. S. Sunitha, A. Vijayakumar, Blocks in fuzzy graphs, The Journal of Fuzzy Mathematics, 13(1) (2005), 13-23.
[23] Trafficking in Persons: Global Patterns, Appendices-United Nations Office on Drugs and Crime, Citation Index, pp. 54-102, 2006.
[24] R. T. Yeh, S. Y. Bang, Fuzzy relations, fuzzy graphs and their applications to clustering analysis, In: L. A. Zadeh, K. S. Fu and M. Shimura (Eds.), Fuzzy Sets and Their Applications, Academic Press, 1975, 125-149.
[25] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.