[1] C. Angulo, D. Anguita, L. Gonzalez-Abril, J. A. Ortega, Support vector machines for interval discriminant analysis, Neuro-
computing, 71 (2008), 1220-1229.
[2] J. Antoch, R. Miele, Use of genetic algorithms when computing variance of interval data, In: B. Fichet et al. (Eds.), Clas-
sification and Multivariate Analysis for Complex Data Structures, Studies in Classification, Data Analysis, and Knowledge
Organization, Springer, 2011.
[3] A. Blanco-Fernandez, A. Colubi, M. Garca-Barzana, A set arithmetic-based linear regression model for modelling interval-
valued responses through real-valued variables, Information Sciiences, 247 (2013), 109-122.
[4] C. Cappelli, P. D'Urso, F. Di Iorio, Regime change analysis of interval-valued time series with an application to PM10,
Chemometrics and Intelligent Laboratory Systems, 146 (2015), 337-346.
[5] I. Couso, D. Dubois, Statistical reasoning with set-valued information: Ontic vs. epistemic views, International Journal of
Approximate Reasoning, 55 (2014), 1502-1518.
[6] E. Dantsin, V. Kreinovich, A. Wolpert, G. Xiang, Population variance under interval uncertainty: a new algorithm, Reliable
Computing, 12 (2006), 273-280.
[7] P. D'Urso, L. De Giovanni, R. Massari, Trimmed fuzzy clustering for interval-valued data, Advances Data Analysis and
Classification, 9 (2015), 21-40.
[8] P. D'Urso, P. Giordani, A least squares approach to principal component analysis for interval valued data, Chemometrics and
Intelligent Laboratory Systems, 70 (2004), 179-192.
[9] A. P. Duarte Silva, P. Brito, Discriminant analysis of interval data: An assessment of parametric and distance-based ap-
proaches, Journal of Classification, 32 (2015), 516-541.
[10] S. Ferson, L. Ginzburg, V. Kreinovich, L. Longpre, M. Aviles, Exact bounds on nite populations of interval data, Reliable
Computing, 11 (2005), 207-233.
[11] M. Gagolewski, Spread measures and their relation to aggregation functions, European Journal of Operational Research, 241
(2015), 469-477.
[12] A. Jalal-Kamali, V. Kreinovich, Estimating correlation under interval uncertainty, Mechanical Systems and Signal Process-
ing, 37 (2013), 43-53.
[13] A. Ko lacz, P. Grzegorzewski, Measures of dispersion for multidimensional data, European Journal of Operational Research,
251 (2016), 930-937.
[14] V. Kreinovich, S. Ferson, Computing best-possible bounds for the distribution of a sum of several variables is NP-hard,
International Journal of Approximate Reasoning, 41 (2006), 331-342.
[15] V. Kreinovich, H. T. Nguyen, B. Wu, On-line algorithms for computing mean and variance of interval data, and their use in intelligent systems, Information Sciences, 177 (2007), 3228-3238.
[16] V. Kreinovich, G. Xiang, Fast algorithms for computing statistics under interval uncertainty: An overview, In: V. N. Huynh et al. (Eds.), Interval/Probabilistic Uncertainty and Non-Classical Logics, Springer, 2008, 19-31.
[17] V. Kreinovich, G. Xiang, S. Ferson, Computing mean and variance under DempsterShafer uncertainty: Towards faster
algorithms, International Journal of Approximate Reasoning, 42 (2006), 212-227.
[18] R. E. Moore, Interval Analysis, Prentice-Hall, 1966.
[19] R. E. Moore, R. B. Kearfott, M. J. Cloud, Introduction to Interval Analysis, SIAM, 2009.
[20] H. T. Nguyen, V. Kreinovich, B. Wu, G. Xiang, Computing Statistics under Interval and Fuzzy Uncertainty, Springer, 2012.
[21] A. Oussous, F. Z. Benjelloun, A. A. Lahcen, S. Belfkih, Big Data technologies: A survey, Journal of King Saud University-
Computer and Information Sciences, 30 (2018), 431-448.
[22] A. B. Ramos-Guajardo, A. Colubi, G. Gonzalez-Rodrguez., Inclusion degree tests for the Aumann expectation of a random
interval, Information Sciences, 288 (2014), 412-422.
[23] A. B. Ramos-Guajardo, P. Grzegorzewski, Distance-based linear discriminant analysis for interval-valued data, Information
Sciences, 372 (2016), 591-60.
[24] B. Sinova, A. Colubi, M. A. Gil, G. Gonzalez-Rodrguez, Interval arithmetic-based linear regression between interval data:
Discussion and sensitivity analysis on the choice of the metric, Informtion Sciences, 199 (2012), 109-124.
[25] A. Skowron, A. Jankowski, S. Dutta, Interactive granular computing, Granular Computing, 1 (2016), 95-113.
[26] R. M. C. R. Souza, D. C. F. Queiroz, F. J. A. Cysneiros, Logistic regression-based pattern classiers for symbolic interval
data, Pattern Analysis and Applications, 14 (2011), 273-282.
[27] T. Sunaga, Theory of interval algebra and its application to numerical analysis, RAAG Memoirs, Ggujutsu Bunken Fukuy-
kai, Tokyo, 2 (1958), 29-46, 547-564.
[28] S. A. Vavasis, Nonlinear Optimization: Complexity Issues, Oxford University Press, New York, 1991.
[29] H. Wang, Z. Xu, H. Fujita, S. Liu, Towards felicitous decision making: An overview on challenges and trends of Big Data, Information Sciences, 367-368 (2016), 747-765.
[30] M. Warmus, Calculus of approximations, Bulletin de l'Academie Polonaise de Sciences, 4 (1956), 253-257.
[31] G. Xiang, M. Ceberio, V. Kreinovich, Computing population variance and entropy under interval uncertainty: linear-time algorithms, Reliable Computing, 13 (2007), 467-488.