[1] L. Abdullah, L. Najib, A new type-2 fuzzy set of linguistic variables for the fuzzy analytic hierarchy process, Expert
Systems With Applications, 41(7) (2014), 3297{3305.
[2] L. Abdullah, N. Zulkifli, Integration of fuzzy ahp and interval type-2 fuzzy dematel: An application to human resource
management, Expert Systems With Applications, 42(9) (2015), 4397{4409.
[3] J. Aisbett, J. T. Rickard, D. G. Morgenthaler, Type-2 fuzzy sets as functions on spaces, IEEE Transactions on Fuzzy
Systems, 18(4) (2010), 841{844.
[4] F. J. Cabrerizo, E. Herrera-Viedma, W. Pedrycz, A method based on PSO and granular computing of linguistic infor-
mation to solve group decision making problems defined in heterogeneous contexts, European Journal of Operational
Research, 230(3) (2013), 624{633.
[5] F. T. S. Chan, N. Kumar, Global supplier development considering risk factors using fuzzy extended ahp-based
approach, Omega-International Journal of Management Science, 35(4) (2007), 417{431.
[6] S. M. Chen, L. W. Lee, Fuzzy multiple attributes group decision-making based on the interval type-2 topsis method,
Expert Systems with Applications, 37(4) (2010), 2790{2798.
[7] S. M. Chen, L. W. Lee, Fuzzy multiple attributes group decision-making based on the ranking values and the arithmetic
operations of interval type-2 fuzzy sets, Expert Systems with Applications, 37(1) (2010), 824{833.
[8] S. M. Chen, L. W. Lee, Fuzzy multiple criteria hierarchical group decision-making based on interval type-2 fuzzy
sets, IEEE Transactions on Systems Man and Cybernetics Part a-Systems and Humans, 40(5) (2010), 1120{1128.
[9] S. K. De, R. Biswas, A. R. Roy, Some operations on intuitionistic fuzzy sets, Fuzzy Sets and Systems, 114(3) (2000),
477{484.
[10] M. Galan, A sharp lagrange multiplier theorem for nonlinear programs, Journal of Global Optimization, 65(3)
(2016), 513{530.
[11] F. Herrera, L. Martinez, A 2-tuple fuzzy linguistic representation model for computing with words, IEEE Transactions
on Fuzzy Systems, 8(6) (2000), 746{752.
[12] F. Herrera, E. Herrera-Viedma, L. Martinez, A fuzzy linguistic methodology to deal with unbalanced linguistic term
sets, IEEE Transactions on Fuzzy Systems, 16(2) (2008), 354{370.
[13] N. N. Karnik, J. M. Mendel, Centroid of a type-2 fuzzy set, Information Sciences, 132(1-4) (2001), 195{220.
[14] S. H. Kim, B. S. Ahn, Interactive group decision making procedure under incomplete information, European Journal
of Operational Research, 116(3) (1999), 498{507.
[15] S. H. Kim, S. H. Choi, J. K. Kim, An interactive procedure for multiple attribute group decision making with
incomplete information: Range-based approach, European Journal of Operational Research, 118(1) (1999), 139{
152.
[16] L. W. Lee, S. M. Chen, Fuzzy multiple attributes group decision-making based on the extension of topsis method and
interval type-2 fuzzy sets., In: Proceedings of 2008 International Conference on Machine Learning and Cybernetics.
Institute of Electrical and Electronics Engineers, New York, 2008.
[17] L. W. Lee, S. M. Chen, A new method for fuzzy multiple attributes group decision-making based on the arithmetic
operations of interval type-2 fuzzy sets., In: Proceedings of 2008 International Conference on Machine Learning and
Cybernetics. Institute of Electrical and Electronics Engineers, New York, 2008.
[18] H. Liao, Z. S. Xu, X. J. Zeng, J. M. Merigo, Qualitative decision making with correlation coefficients of hesitant
fuzzy linguistic term sets, Knowledge-based Systems, 76 (2015), 127{138.
[19] X. Liu, Z. F. Tao, H. Y. Chen, L. G. Zhou, A magdm method based on 2-tuple linguistic heronian mean and
new operational laws, International Journal of Uncertainty Fuzziness and Knowledge-based Systems, 24(4) (2016),
593{627.
[20] X. Y. Ma, P. Wu, L. G. Zhou, H. Y. Chen, T. Zheng, J. Q. Ge, Approaches based on interval type-2 fuzzy
aggregation operators for multiple attribute group decision making, International Journal of Fuzzy Systems, 18(4)
(2016), 697{715.
[21] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New directions, Prentice-Hall, Upper
Saddle River, NJ, 2001.
[22] J. M. Mendel, H. Hagras, H. Bustince, F. Herrera, Comments on "interval type-2 fuzzy sets are generalization of
interval-valued fuzzy sets: Towards a wide view on their relationship", IEEE Transactions on Fuzzy Systems, 24(1)
(2016), 249{250.
[23] J. M. Mendel, R. I. John, F. L. Liu, Interval type-2 fuzzy logic systems made simple, IEEE Transactions on Fuzzy
Systems, 14(6) (2006), 808{821.
[24] J. M. Mendel, D. Wu, Perceptual Computing: Aiding People in Making Subjective Judgments, John Wiley and
IEEE Press, NEW YORK, USA, 2010.
[25] J. M. Mendel, H. W. Wu, New results about the centroid of an interval type-2 fuzzy set, including the centroid of
a fuzzy granule, Information Sciences, 177(2) (2007), 360{377.
[26] J. M. Mendel, M. R. Rajati, P. Sussner, On clarifying some denitions and notations used for type-2 fuzzy sets as
well as some recommended changes, Information Sciences, 340-341 (2016), 337{345.
[27] J. M. Merigo, M. Casanovas, L. Martnez, Linguistic aggregation operators for linguistic decision making based
on the dempster-shafer theory of evidence, International Journal of Uncertainty Fuzziness and Knowledge-based
Systems, 18(3) (2010), 287{304.
[28] J. M. Merig , D. Palacios-Marques, S. Zeng, Subjective and objective information in linguistic multi-criteria group
decision making, European Journal of Operational Research, 248(2) (2016), 522{531.
[29] J. M. Merigo, A. M. Gil-Lafuente, Induced 2-tuple linguistic generalized aggregation operators and their application
in decision-making, Information Sciences, 236 (2013), 1{16.
[30] J. M. Merigo, A. M. Gil-Lafuente, R. R. Yager, An overview of fuzzy research with bibliometric indicators. Applied
Soft Computing, 27 (2015), 420{433.
[31] M. Moharrer, H. Tahayori, L. Livi, A. Sadeghian, A. Rizzi, Interval type-2 fuzzy sets to model linguistic label
perception in online services satisfaction, Soft Computing, 19(1) (2015), 237{250.
[32] J. A. Morente-Molinera, I. J. Perez, M. R. Urena, E. Herrera-Viedma, On multi-granular fuzzy linguistic modeling
in group decision making problems: A systematic review and future trends, Knowledge-based Systems, 74 (2015),
49{60.
[33] K. S. Park, S. H. Kim, Tools for interactive multiattribute decisionmaking with incompletely identified information,
European Journal of Operational Research, 98(1) (1997), 111{123.
[34] H. B. Sola, J. Fernandez, H. Hagras, F. Herrera, M. Pagola, E. Barrenechea, Interval type-2 fuzzy sets are gen-
eralization of interval-valued fuzzy sets: Toward a wider view on their relationship, IEEE Transactions on Fuzzy
Systems, 23(5) (2015), 1876{1882.
[35] J. H. Wang, J. Y. Hao, A new version of 2-tuple fuzzy linguistic, representation model for computing with words,
IEEE Transactions on Fuzzy Systems, 14(3) (2006), 435{445.
[36] J. Q. Wang, P. Lu, H. Zhang, X. Chen, Method of multi-criteria group decision-making based on cloud aggregation
operators with linguistic information, Information Sciences, 274 (2014), 177{191.
[37] W.Wang, X. Liu, Some operations over atanassov's intuitionistic fuzzy sets based on Einstein t-norm and t-conorm,
International Journal of Uncertainty Fuzziness and Knowledge-based Systems, 21(2) (2013), 263{276.
[38] W. Wang, X. Liu, Y. Qin, Multi-attribute group decision making models under interval type-2 fuzzy environment,
Knowledge-Based Systems, 30 (2012), 121{128.
[39] D. R. Wu, J. M. Mendel, Aggregation using the linguistic weighted average and interval type-2 fuzzy sets, IEEE
Transactions on Fuzzy Systems, 15(6) (2007), 1145{1161.
[40] D. R. Wu, J. M. Mendel, Corrections to "aggregation using the linguistic weighted average and interval type-2 fuzzy
sets", IEEE Transactions on Fuzzy Systems, 16(6) (2008), 1664{1666.
[41] D. R. Wu, J. M. Mendel, Enhanced karnik{mendel algorithms, IEEE Transactions on Fuzzy Systems, 17(4) (2009),
923{934.
[42] T.Wu, X. W. Liu, An interval type-2 fuzzy clustering solution for large-scale multiple-criteria group decision-making
problems, Knowledge-based Systems, 114 (2016), 118{127.
[43] Z. S. Xu, EOWA and EOWG operators for aggregating linguistic labels based on linguistic preference relations,
International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 12(6) (2004), 791{810.
[44] Z. S. Xu, A method based on linguistic aggregation operators for group decision making with linguistic preference
relations, Information Sciences, 166(1-4) (2004), 19{30.
[45] Z. S. Xu, Uncertain linguistic aggregation operators based approach to multiple attribute group decision making
under uncertain linguistic environment, Information Sciences, 168(1-4) (2004), 171{184.
[46] Z. S. Xu, An interactive approach to multiple attribute group decision making with multigranular uncertain linguistic
information, Group Decision and Negotiation, 18(2) (2009), 119{145.
[47] Y. X. Xue, J. X. You, X. F. Zhao, H. C. Liu, An integrated linguistic mcdm approach for robot evaluation and
selection with incomplete weight information, 54(18) (2016), 5452{5467.
[48] R. R. Yager, Ranking fuzzy subsets over the unit interval, In: Proceedings of the 1978 IEEE Conference on Decision
and Control Including the 17th Symposium on Adaptive Processes. Institute of Electrical and Electronics Engineers,
New York, USA, 1978.
[49] H.-B. Yan, X. Zhang, Y. Li, Linguistic multi-attribute decision making with multiple priorities, Computers and
Industrial Engineering, 109(Supplement C) (2017), 15{27.
[50] D. Yu, D. F. Li, J. M. Merigo, L. Fang, Mapping development of linguistic decision making studies, Journal of
Intelligent and Fuzzy Systems, 30(5) (2016), 2727{2736.
[51] L. A. Zadeh, Fuzzy sets, Information and Control, 8(3) (1965), 338{353.
[52] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Information Sciences,
8(3) (1975), 199{249.
[53] M. Zeleny, Multiple criteria decision making. McGraw-Hill, New York, 1982.