Document Type : Research Paper
Authors
1 School of Mathematics and Statistics, Xidian University, Xi’an 710126, PR China.
2 School of Mathematics and Statistics, Xidian University, Xi’an 710126, PR China,, and School of Sciences, Northwest A&F University, Yangling 712100, PR China.
Abstract
Highlights
[1] A. Agarwal, J. C. Duchi, The generalization ability of online algorithms for dependent data, IEEE Transactions on Information
Theory, 59(1) (2013), 573–587.
[2] E. Alpaydin, Introduction to machine learning, 3nd edition, MIT Press (2014), 1–5.
[3] G. Atalik, S. Senturk, A new approach for parameter estimation in fuzzy logistic regression, Iranian Journal of Fuzzy Systems,
15(1) (2018), 91–102.
[4] R. Batuwita, V. Palade, FSVM-CIL: Fuzzy support vector machine for class imbalance learning, IEEE Transactions on Fuzzy
Systems, 18(3) (2010), 558–571.
[5] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms, New York: Plenum Press (1981), 203–239.
[6] J. J. Buckley, Y. Hayashi, Fuzzy neural networks: A survey, Fuzzy Sets and Systems, 66 (1994) 1–13.
[7] O. Chapelle, V. Vapnik, O. Bousquet, S. Mukherjee, Choosing multiple parameters for support vector machines, Machine
learning, 46(1) (2002), 131–159.
[8] S. Y. Chong, P. Tino, X. Yao, Relationship between generalization and diversity in coevolutionary learning, IEEE Transactions
on Computational Intelligence and AI in Games, 1(3) (2009), 214–232.
[9] T. M. Cover, J. A. Thomas, Elements of information theory. Jhon wiley & Sons, INC., Publication, Sec. edition (2006), 13-29.
[10] A. De Luca, S. Termini, A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory, Information and Control,
20 (1972), 301-312.
[11] S. Decherchi, S. Ridella, R. Zunino, P. Gastaldo, D. Anguita, Using unsupervised analysis to constrain generalization bounds
for support vector classifiers, IEEE Transactions on Neural Networks, 21(3) (2010), 424–438.
[12] D. Dua, Karra Taniskidou, UCI machine learning repository, [http://archive.ics.uci.edu/ml], Irvine, CA: University of Cali-
fornia, School of Information and Computer Science, 2017.
[13] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification. Wiley Press, (2001), 394–453.
[14] S. Ezghari, A. Zahi, K. Zenkouar, A new nearest neighbor classification method based on fuzzy set theory and aggregation
operators, Expert Systems with Applications, 80 (2017), 58–74.
[15] C. C. Gavin, L. C. Nicola, On over-fitting in model selection and subsequent selection bias in performance evaluation,
Journal of Machine Learning Research, 11 (2010), 2079–2107.
[16] M. Gupta, R. Ragade, P. Yager, Advances in fuzzy set theory and applications, North-Holland Publishing Company, 22(4)
(1979), 623–633.
[17] T. Hastie, R. Tibshirani, J. H. Friedman. The elements of statistical learning: Data mining, inference and prediction, Springer
(2009), 295–481.
[18] L. Hu, K. C. C. Chan, Fuzzy clustering in a complex network based on content relevance and link structures, IEEE Transac-
tions on Fuzzy Systems, 24(2) (2016), 456–470.
[19] A. Kandel, Fuzzy techniques in pattern recognition. New York, John Wiley, 1982.
[20] J. M. Keller, M. R. Gray, J. A. Givens, A fuzzy K-nearest neighbor algorithm, IEEE Transactions on Systems Man and
Cybernetics, SMC-15(4) (1985), 580–585.
[21] C. Lee, D. A. Landgrebe, Decision boundary feature extraction for neural networks, IEEE Transactions on Neural Networks
and Learning, 8(1) (1997), 75–83.
[22] C. F. Lin, S. D. Wang, Fuzzy support vector machines, IEEE Transactions on Neural Networks and Learning, 13(2) (2002),
464–471.
[23] O. Ludwig, U. Nunes, B. Ribeiro, C. Premebida. Improving the generalization capacity of cascade classifers, IEEE Transac-
tions on Systems, Man and Cybernetics, 43(6) (2013), 2135–2146.
[24] R. K. Nowicki, J. T. Starcaewski, A new method for classification of imprecise data using fuzzy rough fuzzification, Informa-
tion Sciences, 414(5) (2017), 33–52.
[25] A. H. M. Pimenta, H. de A. Camargo, Genetic interval type-2 fuzzy classifier generalization: A comparative approach,
Eleventh Brazilian Symposium on Neural Networks, (2010), 194–199.
[26] X. Qiao, L. Zhang, Flexible high-dimensional classification machines and their asymptotic properties, Journal of Machine
Learning Research, 16(8) (2015), 1547–1572.
[27] S. S. Shwartz, S. B. David, Understanding machine learning-from theory to algorithms, New York, NY, USA: Cambridge
Press (2014), 43–54.
[28] S. K. Shukla, M. K. Tiwari, GA guided cluster based fuzzy decision tree for reactive ion etching modeling: A data mining
approach, IEEE Transactions on Semiconductor Manufacturing, 25(1) (2012), 45–56.
[29] M. Stone, Cross-validatory choice and assessment of statistical predictions, Journal of the Royal Statistical Society, Ser. B,
(Statist. Methodol.), 36(2) (1974), 111–147.
[30] G. Varando, C. Bielza, P. Larranaga, Decision boundary for discrete bayesian network classifiers, Journal of Machine Learn-
ing Research, 16(12) (2015), 2725–2749.
[31] P. P. Wang, S. K. Chang, Theory and applications to policy analysis and information systems. New York: Plenum Press,
1980.
[32] X. Z. Wang, H. J. Xing, Y. Li, Q. Hua, C. R. Dong, W. Pedrycz, A study on relationship between generalization abilities and
fuzziness of base classifiers in ensemble learning, IEEE Transactions on Fuzzy Systems, 23(5) (2015), 1638–1653.
[33] I. H. Witten, E. Frank, Data mining: practical machine learning tools and techniques, 2nd edition, Morgan Kaufmann
Publication (2005), 1–36.
[34] Z. Yan, C. Xu, Studies on classification models using decision boundaries, in Proc. 8th IEEE International Conference of
Cognitive Information, (2009), 287-294.
[35] D. S. Yeung, E. Tsang, Measures of fuzziness under dierent uses of fuzzy sets, Advanced Computing Intelligent Communi-
cation Computing Information Sciences, 298 (2012), 25–34.
[36] Y. Yuan, M. J. Shaw, Induction of fuzzy decision trees. Fuzzy Sets and Systems, 69 (1995), 125–139.
[37] L. A. Zadeh, Fuzzy sets, Information Control, 8 (1965) 338–353.
[38] Y. Zhang, R. Maciejewski, Quantifying the visual impact of classification boundaries in choropleth maps, IEEE Transactions on Visualization and Computer Graphics, 23(1) (2017), 371–380.
Keywords