Document Type : Research Paper


Department of Mathematics, Yazd University, Yazd, Iran


In a ternary semihyperring, addition is a hyperoperation and multiplication
is a ternary operation. Indeed, the notion of ternary semihyperrings
is a generalization of semirings. Our main purpose of this paper is to introduce
the notions of fuzzy hyperideal and fuzzy bi-hyperideal in ternary semihyperrings.
We give some characterizations of fuzzy hyperideals and investigate
several kinds of them.


[1] R. Ameri and H. Hedayati, On k-hyperideals of semihyperrings, J. Discrete Math. Sci. Cryptogr.,
10 (2007), 41-54.
[2] S. M. Anvariyeh and B. Davvaz, Strongly transitive geometric spaces associated to hypermodules,
Journal of Algebra, 322 (2009), 1340-1359.
[3] S. M. Anvariyeh, S. Mirvakili and B. Davvaz, - Relation on hypermodules and fundamental
modules over commutative fundamental rings, Communications in Algebra, 36(2) (2008),
[4] S. K. Bhakat and P. Das, Fuzzy subrings and ideals redefined, Fuzzy Sets and Systems, 81
(1996), 383-393.
[5] A. Chronowski, On ternary semigroups of lattice homomorphisms, Quasigroups Related Systems,
3 (1996), 55-72.
[6] A. Chronowski, Congruences on ternary semigroups, Ukrainian Math. J., 56 (2004), 662-681.
[7] P. Corsini, Prolegomena of hypergroup theory, Second edition, Aviani editor, 1993.
[8] P. Corsini and V. Leoreanu, Applications of hyperstructure theory, Advances in Mathematics,
Kluwer Academic Publishers, Dordrecht, 2003.
[9] G. Crombez, On (n,m)-rings, Abh. Math. Semin. Univ. Hamburg, 37 (1972), 180-199.
[10] G. Crombez and J. Timm, On (n,m)-quotient rings, Abh. Math. Semin. Univ. Hamburg, 37
(1972), 200-203.
[11] B. Davvaz, Fuzzy Hv-groups, Fuzzy Sets and Systems, 101 (1999), 191-195.
[12] B. Davvaz, Fuzzy Hv-submodules, Fuzzy Sets and Systems, 117 (2001), 477-484.
[13] B. Davvaz, Hyperideals in ternary semihyperrings, submitted.
[14] B. Davvaz, P. Corsini and V. Leoreanu-Fotea, Fuzzy n-ary subpolygroups, Computers &
Mathematics with Applications, 57 (2009), 141-152.
[15] B. Davvaz, P. Corsini and V. Leoreanu-Fotea, Atanassov’s intuitionistic (S, T)-fuzzy n-ary
subhypergroups and their properties, Information Sciences, 179 (2009), 654-666.
[16] B. Davvaz and V. Leoreanu, Applications of interval valued fuzzy n-ary polygroups with
respect to t-norms (t-conorms), Computers & Mathematics with Applications, 57 (2009),
[17] B. Davvaz, J. Zhan and K. P. Shum, Generalized fuzzy Hv-ideals of Hv-rings, Int. J. General
Systems, 37(3) (2008), 329-346.
[18] B. Davvaz, J. Zhan and K. P. Shum, Generalized fuzzy Hv-submodules endowed with interval
valued membership functions, Information Sciences, 178(15) (2008), 3147-3159.
[19] B. Davvaz, Approximations in n-ary algebraic systems, Soft Computing, 12 (2008), 409-418.
[20] B. Davvaz, Rings derived from semihyper-rings, Algebras Groups Geom., 20 (2003), 245-252.
[21] B. Davvaz, Some results on congruences in semihypergroups, Bull. Malays. Math. Soc., 23(2)
(2000), 53-58.
[22] B. Davvaz and V. Leoreanu-Fotea, Hyperring theory and applications, International Academic
Press, USA, 2007.
[23] B. Davvaz and V. Leoreanu-Fotea, Binary relations on ternary semihypergroups, Communications
in Algebra, to appear.
[24] B. Davvaz and A. Salasi, A realization of hyperrings, Communications in Algebra, 34(12)
(2006), 4389-4400.
[25] B. Davvaz and T. Vougiouklis, Commutative rings obtained from hyperrings (Hv-rings) with
-relations, Communications in Algebra, 35(11) (2007), 3307-3320.
[26] B. Davvaz and T. Vougiouklis, n-Ary hypergroups, Iranian Journal of Science and Technology,
Transaction A, 30(A2) (2006), 165-174.
[27] B. Davvaz, W. A. Dudek and S. Mirvakili, Neutral elements, fundamental relations and n-ary
hypersemigroups, International Journal of Algebra and Computation, 19(4) (2009), 567-583.
[28] B. Davvaz, W. A. Dudek and T. Vougiouklis, A generalization of n-ary algebraic systems,
Communications in Algebra, 37 (2009), 1248-1263.
[29] V. N. Dixit and S. Dewan, A note on quasi and bi-ideals in ternary semigroups, Internat. J.
Math. & Math. Sci., 18 (1995), 501-508.
[30] W. D¨ornte, Untersuchungen ¨uber einen verallgemeinerten Gruppenbegriff, Math. Z., 29
(1928), 1-19.
[31] W. A. Dudek, Idempotents in n-ary semigroups, Southeast Asian Bull. Math., 25 (2001),
[32] W. A. Dudek On the divisibility theory in (m, n)-rings, Demonstratio Math., 14 (1981),
[33] T. K. Dutta and S. Kar, On regular ternary semirings, Advances in Algebra, Proceedings of
the ICM Satellite Conference in Algebra and Related Topics, World Scientific, New Jersey,
(2003), 343-355.
[34] K. Is´eki, Ideals in semirings, Proc. Japan Acad., 34 (1958), 29-31.
[35] E. Kasner, An extension of the group concept, Bull. Amer. Math. Soc., 10 (1904), 290-291.
[36] O. Kazanc─▒, S. Yamak and B. Davvaz, The lower and upper approximations in a quotient
hypermodule with respect to fuzzy sets, Information Sciences, 178(10) (2008), 2349-2359.
[37] D. H. Lehmer, A ternary analogue of abelian groups, American J. Math., 59 (1932), 329-338.
[38] D. H. Lehmer, A ternary analogue of abelian groups, Amer. J. Math., 59 (1932), 329-338.
[39] V. Leoreanu-Fotea and B. Davvaz, Roughness in n-ary hypergroups, Information Sciences,
178 (2008), 4114-4124.
[40] V. Leoreanu-Fotea and B. Davvaz, n-hypergroups and binary relations, European Journal of
Combinatorics, 29 (2008), 1027-1218.
[41] W. G. Lister, Ternary rings, Trans. Amer. Math. Soc., 154 (1971), 37-55.
[42] W. J. Liu, Fuzzy Invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8 (1982),
[43] F. Marty, Sur une generalization de la notion de group, 8th Congress Math. Scandenaves,
Stockholm, (1934), 45-49.
[44] V. Maslov, New superposition principle for optimization problems, Sem. sur les Equations
avec D´eriv´ees Partielles 1985/6, Centre Math´ematique de l’Ecole Polytechnique Palaiseau,
esp. 24, 1986.
[45] S. Mirvakili and B. Davvaz, Relations on Krasner (m, n)-hyperrings, European Journal of
Combinatorics, to appear.
[46] S. Mirvakili, S. M. Anvariyeh and B. Davvaz, On -relation and transitivity conditions of ,
Communications in Algebra, 36 (2008), 1695-1703.
[47] D. Monk and F. M. Sioson, m-semigroups, semigroups, function representations, Fund.
Math., 59 (1966), 233-241.
[48] A. Nakassis, Expository and survey article recent results in hyperring and hyperfield theory,
Internat. J. Math. Math. Sci., 11 (1988), 209-220.
[49] P. M. Pu and Y. M. Liu, Fuzzy topology I, neighborhood structure of a fuzzy point and
Moors-Smith convergence, J. Math. Anal., 76 (1980), 571-599.
[50] E. L. Post, Polyadic groups, Trans. Amer. Math. Soc., 48 (1940), 208-350.
[51] F. Poyatos, The Jordan-H¨older theorem for A-semimodules (Spanish), Rev. Mat. Hisp.-
Amer., 32(4) (1972), 251-260; ibid. 33(4) (1973) 36-48; ibid. 33(4) (1973), 122-132.
[52] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517.
[53] S. A. Rusakov, Some applications of n-ary group theory, Belaruskaya Navuka, Minsk, 1998.
[54] M. K. Sen and M. R. Adhikari, On k-ideals of semirings, Internat. J. Math. & Math. Sci.,
15 (1992), 347-350.
[55] F. M. Sioson, Ideal theory in ternary semigroups, Math. Jpn., 10 (1965), 63-84.
[56] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, USA, 1994.
[57] T. Vougiouklis, On some representations of hypergroups, Ann. Sci. Univ. Clermont-Ferrand
II Math., 26 (1990), 21-29.
[58] T. Vougiouklis, The fundamental relation in hyperrings, the general hyperfield, Proc. Fourth
Int. Congress on Algebraic Hyperstructures and Applications (AHA 1990), World Scientific,
(1991), 203-211.
[59] X. H. Yuan, C. Zhang and Y. H. Ren, Generalized fuzzy groups and many valued applications,
Fuzzy Sets and Systems, 138 (2003), 205-211.
[60] M. M. Zahedi, M. Bolurian and A. Hasankhani, On polygroups and fuzzy subpolygroups, J.
Fuzzy Math., 3 (1995), 1-15.