RANDOM FUZZY SETS: A MATHEMATICAL TOOL TO DEVELOP STATISTICAL FUZZY DATA ANALYSIS

Document Type : Research Paper

Authors

Departamento de Estadstica e I.O. y D.M., Universidad de Oviedo, Spain

Abstract

Data obtained in association with many real-life random experiments from different fields cannot be perfectly/exactly quantified.\hspace{.1cm}Often the underlying imprecision can be suitably described in terms of fuzzy numbers/\\values. For these random experiments, the scale of fuzzy numbers/values enables to capture more variability and subjectivity than that of categorical data, and more accuracy and expressiveness than that of numerical/vectorial data. On the other hand, random fuzzy numbers/sets model the random mechanisms generating experimental fuzzy data, and they are soundly formalized within the probabilistic setting.
This paper aims to review a significant part of the recent literature concerning the statistical data analysis with fuzzy data and being developed around the concept of random fuzzy numbers/sets.

Keywords


[1] M. C. Alonso, T. Brezmes, M. A. Lubiano and C. Bertoluzza, A generalized real-valued
measure of the inequality associated with a fuzzy random variable, Int. J. Approx. Reas., 26
(2001), 47–66.
[2] C. Bertoluzza, N. Corral and A. Salas, On a new class of distances between fuzzy numbers,
Mathware & Soft Computing, 2 (1995), 71–84.
[3] A. Colubi, Statistical inference about the means of fuzzy random variables: applications to
the analysis of fuzzy- and real-valued data, Fuzzy Sets and Systems, 160 (2009), 344–356.
[4] A. Colubi, J. S. Dom´ınguez-Menchero, M. L´opez-D´ıaz and D. A. Ralescu, On the formalization
of fuzzy random variables, Information Sciences, 133 (2001), 3–6.
[5] A. Colubi, G. Gonz´alez-Rodr´ıguez, M. A. Gil and W. Trutschnig, Nonparametric criteria for
supervised classification of fuzzy data, Int. J. Approx. Reas., 52 (2011), 1272–1282.
[6] A. Colubi, M. L´opez-D´ıaz, J. S. Dom´ınguez-Menchero and M. A. Gil, A generalized strong
law of large numbers, Prob. Theor. Rel. Fields, 114 (1999), 401–417.
[7] P. Diamond and P. Kloeden, Metric spaces of fuzzy sets, Fuzzy Sets and Systems, 100 (1999),
63–71.
[8] M. B. Ferraro, R. Coppi, G. Gonz´alez-Rodr´ıguez and A. Colubi, A linear regression model
for imprecise response, Int. J. Approx. Reas., 51 (2010), 759–770.
[9] D. Garc´ıa, M. A. Lubiano and M. C. Alonso, Estimating the expected value of fuzzy random
variables in the stratified random sampling from finite populations, Information Sciences, 138
(2001), 165–184.
[10] M. A. Gil, M. L´opez-D´ıaz and H. L´opez-Garc´ıa, The fuzzy hyperbolic inequality index associated
with fuzzy random variables, Eur. J. Oper. Res., 110 (1998), 377–391.
[11] M. A. Gil, M. A. Lubiano, M. Montenegro and M. T. L´opez, Least squares fitting of an affine
function and strength of association for interval-valued data, Metrika, 56 (2002), 97–111.
[12] M. A. Gil, M. Montenegro, G. Gonz´alez-Rodr´ıguez, A. Colubi and M. R. Casals, Bootstrap
approach to the multi-sample test of means with imprecise data, Comp. Stat. Data Anal., 51
(2006), 148–162.
[13] E. Gin´e and J. Zinn, Bootstrapping general empirical measures, Ann. Probab., 18 (1990),
851–869.
[14] G. Gonz´alez-Rodr´ıguez, A. Blanco, A. Colubi and M. A. Lubiano, Estimation of a simple
linear regression model for fuzzy random variables, Fuzzy Sets and Systems, 160 (2009),
357-370.
[15] G. Gonz´alez-Rodr´ıguez, A. Colubi and M. A. Gil, A fuzzy representation of random variables:
an operational tool in exploratory analysis and hypothesis testing, Comp. Stat. Data Anal.,
51 (2006), 163–176.
[16] G. Gonz´alez-Rodr´ıguez, A. Colubi and M. A. Gil, Fuzzy data treated as functional data. A
one-way ANOVA test approach, Comp. Stat. Data Anal., 56 (2012), 943-955.
[17] G. Gonz´alez-Rodr´ıguez, A. Colubi, M. A. Gil and P. D’Urso, An asymptotic two dependent
samples test of equality of means of fuzzy random variables, In: Proc. COMPSTAT’2006,
(2006), http://www.stat.unipg.it/iasc/Proceedings/2006/COMPSTAT/CD/145.pdf.
[18] G. Gonz´alez-Rodr´ıguez, M. Montenegro, A. Colubi and M. A. Gil, Bootstrap techniques
and fuzzy random variables: Synergy in hypothesis testing with fuzzy data, Fuzzy Sets and
Systems, 157 (2006), 2608–2613.
[19] G. Gonz´alez-Rodr´ıguez, W. Trutschnig and A. Colubi., Confidence regions for
the mean of a fuzzy random variable, In: Abstracts of IFSA-EUSFLAT 2009,
http://www.eusflat.org/publications/proceedings/IFSA-EUSFLAT 2009/pdf/tema 1433.pdf.
[20] T. Hesketh, R. Pryor and B. Hesketh, An application of a computerized fuzzy graphic rating
scale to the psychological measurement of individual differences, Int. J. Man-Machine Studies,
29 (1988), 21–35.
[21] B. Hesketh, T. Hesketh, J. I. Hansen and D. Goranson, Use of fuzzy variables in developing
new scales from the strong interest inventory, J. Counseling Psychology, 42 (1995), 85–99.
[22] M. Hukuhara, Int´egration des applications measurables dont la valeur est un compact convexe,
Funkcial. Ekvac., 10 (1967), 205-223.
[23] E. P. Klement, M. L. Puri and D. A. Ralescu, Limit theorems for fuzzy random variables,
Proc. R. Soc. Lond. A, 407 (1986), 171–182.
[24] R. K¨orner, An asymptotic -test for the expectation of random fuzzy variables, J. Stat. Plann.
Infer., 83 (2000), 331–346.
[25] R. K¨orner and W. N¨ather, On the variance of random fuzzy variables, In: C. Bertoluzza,
M. A. Gil and D. A. Ralescu, eds., Statistical Modeling, Analysis and Management of Fuzzy
Data, Physica-Verlag, Heidelberg, (2002), 22–39.
[26] R. Kruse and K. D. Meyer, Statistics with vague data, D. Reidel Publishing Company, Dordrecht,
1987.
[27] H. Kwakernaak, Fuzzy random variables-I. definitions and theorems, Information Sciences,
15 (1978), 1–29.
[28] H. Kwakernaak, Fuzzy random variables-II. algorithms and examples for the discrete case,
Information Sciences, 17 (1979), 253–278.
[29] H. L´opez-Garc´ıa, M. A. Gil, N. Corral and M. T. L´opez, Estimating the fuzzy inequality
associated with a fuzzy random variable in random samplings from finite populations, Kybernetika,
34 (1998), 149–161.
[30] M. A. Lubiano, M. C. Alonso and M. A. Gil, Statistical inferences on the S-mean squared
dispersion of a fuzzy random variable, In: B. de Baets, J. Fodor and L. T. Koczy, eds.,
Proceedings of EUROFUSE-SIC99, University of Veterinary Science, Budapest, (1999), 532–
537.
[31] M. A. Lubiano and M. A. Gil, Estimating the expected value of fuzzy random variables in
random samplings from finite populations, Stat. Pap., 40(1999), 277–295.
[32] M. A. Lubiano, M. A. Gil and M. L´opez-D´ıaz, On the Rao-Blackwell theorem for fuzzy
random variables, Kybernetika, 35 (1999), 167–175.
[33] M. A. Lubiano, M. A. Gil, M. L´opez-D´ıaz and M. T. L´opez, The 􀀀! -mean squared dispersion
associated with a fuzzy random variable, Fuzzy Sets and Systems, 111 (2000), 307–317.
[34] M. Montenegro, M. R. Casals, M. A. Lubiano and M. A. Gil, Two-sample hypothesis tests of
means of a fuzzy random variable, Information Sciences, 133 (2001), 89–100.
[35] M. Montenegro, A. Colubi, M. R. Casals and M. A. Gil, Asymptotic and Bootstrap techniques
for testing the expected value of a fuzzy random variable, Metrika, 59 (2004), 31–49.
[36] M. Montenegro, M. T. L´opez-Garc´ıa, M. A. Lubiano and G. Gonz´alez-Rodr´ıguez, A dependent
multi-sample test for fuzzy means, In: Abst. 2nd Workshop ERCIM WG Comput. & Statist,
(2009), 102.
[37] T. Nakama, A. Colubi and M. A. Lubiano, Factorial analysis of variance for fuzzy data, In:
Abst. CFE’10 & ERCIM’10, (2010), 88.
[38] H. T. Nguyen, A note on the extension principle for fuzzy sets, J. Math. Anal. Appl., 64
(1978), 369–380.
[39] M. L. Puri and D. A. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl., 91
(1983), 552–558.
[40] M. L. Puri and D. A. Ralescu, The concept of normality for fuzzy random variables, Ann.
Probab., 11 (1985), 1373–1379.
[41] M. L. Puri and D. A. Ralescu, Fuzzy random variables, J. Math. Anal. Appl., 114 (1986),
409–422.
[42] S. Ramezanzadeh, M. Memariani and S. Saati, Data envelopment analysis with fuzzy random
inputs and outputs: a chance-constrained programming approach, Iranian Journal of Fuzzy
Systems, 2 (2005), 21–29.
[43] A. B. Ramos-Guajardo, A. Colubi, G. Gonz´alez-Rodr´ıguez and M. A. Gil, One sample tests
for a generalized Fr´echet variance of a fuzzy random variable, Metrika, 71 (2010), 185–202.
[44] A. B. Ramos-Guajardo and M. A. Lubiano, K-sample tests for equality of variances of
random fuzzy sets, Comp. Stat. Data Anal., 56 (2012), 956–966.
[45] B. Sinova, M. A. Gil, A. Colubi and S. Van Aelst, The median of a random fuzzy number.
The 1-norm distance approach, Fuzzy Sets and Systems, 200 (2011), 99-115.
[46] B. Sinova, S. de la Rosa de S´aa and M. A. Gil, A generalized L1-type metric between fuzzy
numbers for an approach to central tendency of fuzzy data, Information Sciences, under 2nd
review.
[47] S. M. Taheri and M. Kelkinnama, Fuzzy linear regression based on least absolutes deviations,
Iranian Journal of Fuzzy Systems, 9(1) (2012), 121-140.
[48] P. Ter´an, A strong law of large numbers for random upper semicontinuous functions under
exchangeability conditions, Statist. Prob. Lett., 65 (2003), 251–258.
[49] W. Trutschnig, G. Gonz´alez-Rodr´ıguez, A. Colubi and M. A. Gil, A new family of metrics for
compact, convex (fuzzy) sets based on a generalized concept of mid and spread, Information
Sciences, 179 (2009), 3964–3972.
[50] W. Trutschnig and M. A. Lubiano, SAFD: statistical analysis of fuzzy data, http://cran.rproject.
org/web/packages/SAFD/index.html.
[51] R. Viertl and D. Hareter, Fuzzy information and stochastics, Iranian Journal of Fuzzy Systems,
1 (2004), 43–56.
[52] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning,
Part 1, Information Sciences, 8 (1975), 199–249; Part 2, Information Sciences, 8 (1975), 301–
353; Part 3, Information Sciences, 9 (1975), 43–80.
[53] L. A. Zadeh, Discussion: probability theory and fuzzy logic are complementary rather than
competitive, Technometrics, 37 (1995), 271–276.