[1] F. Ahmad, A. Y. Adhami, Neutrosophic programming approach to multiobjective nonlinear transportation problem with fuzzy parameters, International Journal of Management Science and Engineering Management, 14(3) (2019), 218-229.
[2] F. Ahmad, A. Y. Adhami, F. Smarandache, Single valued neutrosophic hesitant fuzzy computational algorithm for multiobjective nonlinear optimization problem, Neutrosophic Sets Systems, 22 (2018), 76-86.
[3] M. Aslam, A variable acceptance sampling plan under neutrosophic statistical interval method, Symmetry, 11(114) (2019), 1-7.
[4] M. Aslam, M. Albassam, Inspection plan based on the process capability index using the neutrosophic statistical method, Mathematics, 7(7) (2019), 1-10.
[5] K. T. Atanassov, Intuitionistic fuzzy sets: Theory and applications, Physica-Verlag Heidelberg, 1999.
[6] S. Ayber, N. Erginel, Developing the neutrosophic fuzzy FMEA method as evaluating risk assessment tool, in Advances in Intelligent Systems and Computing, 1029 (2020), 1130-1137.
[7] S. Aydın, A. Aktas, M. Kabak, Neutrosophic fuzzy analytic hierarchy process approach for safe cities evaluation criteria, Advances in Intelligent Systems and Computing, 896 (2019), 958-965.
[8] P. Biswas, S. Pramanik, B. C. Giri, Value and ambiguity index based ranking method of single-valued trapezoidal neutrosophic numbers and its application to multi-attribute decision making, Neutrosophic Sets Systems, 12 (2016), 127-138.
[9] S. Broumi, A. Bakali, M. Talea, F. Smarandache, L. Vladareanu, Computation of shortest path problem in a network with SV-Trapezoidal neutrosophic numbers, in International Conference on Advanced Mechatronic Systems, ICAMechS, IEEE, (2016), 417-422.
[10] S. Broumi, M. Talea, A. Bakali, F. Smarandache, D. Nagarajan, M. Lathamaheswari, M. Parimala, Shortest path problem in fuzzy, intuitionistic fuzzy and neutrosophic environment: An overview, Complex and Intelligent Systems, 5(4) (2019), 371-378.
[11] Y. Cao, Z. Wu, T. Liu, Z. Gao, J. Yang, Multivariate process capability evaluation of cloud manufacturing resource based on intuitionistic fuzzy set, The International Journal of Advanced Manufacturing Technology, 84(1-4) (2016), 227-237.
[12] A. Chakraborty, S. P. Mondal, A. Ahmadian, N. Senu, S. Alam, S. Salahshour, Different forms of triangular neutrosophic numbers, de-neutrosophication techniques, and their applications, Symmetry, 10(327) (2018), 1-27.
[13] A. Chakraborty, S. P. Mondal, A. Mahata, S. Alam, Different linear and non-linear form of trapezoidal neutrosophic numbers, de-neutrosophication techniques and its application in time-cost optimization technique, sequencing problem, RAIRO-Operations Research, 55 (2021), S97-S118.
[14] L. K. Chan, S. W. Cheng, F. A. Spiring, A new measure of process capability: Cpm, Journal of Quality Technolocy, 20(3) (1988), 162-175.
[15] Y. C. Chang, Interval estimation of capability index cpmk for manufacturing processes with asymmetric tolerances, Computers and Industrial Engineering, 56(1) (2009), 312-322.
[16] S. K. Das, A. Chakraborty, A new approach to evaluate linear programming problem in pentagonal neutrosophic environment, Complex and Intelligent Systems, 7(1) (2021), 101-110.
[17] İ. Deli, A novel defuzzification method of SV-trapezoidal neutrosophic numbers and multi-attribute decision making: A comparative analysis, Soft Computing, 23(23) (2019), 12529-12545.
[18] İ. Deli, Y. Şubaş, Single valued neutrosophic numbers and their applications to multicriteria decision making problem, Neutrosophic Sets Systems, 2(1) (2014), 1-13.
[19] İ. Deli, Y. Şubaş, A ranking method of single valued neutrosophic numbers and its applications to multi-attribute decision making problems, International Journal of Machine Learning and Cybernetics, 8(4) (2017), 1309-1322.
[20] O. Engin, A. Çelik, İ. Kaya, A fuzzy approach to define sample size for attributes control chart in multistage processes: An application in engine valve manufacturing process, Applied Soft Computing Journal, 8(4) (2008), 1654-1663.
[21] P. Gupta, Applications of fuzzy logic in daily life, International Journal of Advanced Research in Computer Science, 8(5) (2017), 1795-1800.
[22] M. Gülbay, C. Kahraman, Development of fuzzy process control charts: Direct fuzzy approach, Itüdergisi/d mühendislik, 7(2) (2008), 95-105.
[23] G. Hesamian, M. G. Akbari, A process capability index for normal random variable with intuitionistic fuzzy information, Operational Research, (2019), 1-14.
[24] T. C. Hsiang, A tutorial on quality control and assurance-the Taguchi methods, ASA Annual Meeting LA, 1985.
[25] C. Kahraman, A. Parchami, S. Cevik Onar, B. Oztaysi, Process capability analysis using intuitionistic fuzzy sets, Journal of Intelligent and Fuzzy Systems, 32(3) (2017), 1659-1671.
[26] İ. Kaya, A genetic algorithm approach to determine the sample size for attribute control charts, Information Sciences, 179 (2009), 1552-1566.
[27] İ. Kaya, A genetic algorithm approach to determine the sample size for control charts with variables and attributes, Expert Systems with Applications, 36(5) (2009), 8719-8734.
[28] İ. Kaya, M. Çolak, A literature review on fuzzy process capability analysis, Journal of Testing and Evaluation, 48(5) (2020), 3963-3985.
[29] İ. Kaya, O. Engin, A new approach to define sample size at attributes control chart in multistage processes: An application in engine piston manufacturing process, Journal of Materials Processing Technology, 183(1) (2007), 38-48.
[30] İ. Kaya, C. Kahraman, A new perspective on fuzzy process capability indices: Robustness, Expert Systems, 37(6) (2010), 4593-4600.
[31] İ. Kaya, C. Kahraman, Fuzzy process capability analyses with fuzzy normal distribution, Expert Systems with Applications, 37(7) (2010), 5390-5403.
[32] İ. Kaya, C. Kahraman, Fuzzy process capability indices with asymmetric tolerances, Expert Systems, 38(12) (2011), 14882-14890.
[33] İ. Kaya, C. Kahraman, Process capability analyses with fuzzy parameters, Expert Systems with Applications, 38 (2011), 11918-11927.
[34] B. Kosko, S. Isaka, Fuzzy logic, Scientific American, 269(1) (1993), 76-81.
[35] S. Kotz, N. L. Johnson, Process capability indices-A review 1992-2000, Journal of Quality Technolocy, 34(1) (2002), 2-19.
[36] R. Kumar, S. A. Edaltpanah, S. Jha, S. Broumi, A. Dey, Neutrosophic shortest path problem, Neutrosophic Sets Systems, 23 (2018), 5-15.
[37] R. Kumar, S. A. Edalatpanah, S. Jha, S. Broumi, R. Singh, A. Dey, A multi objective programming approach to solve integer valued neutrosophic shortest path problems, Neutrosophic Sets Systems, 24 (2019), 134-149.
[38] D. F. Li, J. B. Yang, Fuzzy linear programming technique for multiattribute group decision making in fuzzy environments, Information Sciences, 158 (2004), 263-275.
[39] İ. Otay, C. Kahraman, Analytic network process with neutrosophic sets, in Studies in Fuzziness and Soft Computing, Springer, Cham, 369 (2019), 525-542.
[40] A. Parchami, M. Mashinchi, Fuzzy estimation for process capability indices, Information Sciences, 177(6) (2007), 1452-1462.
[41] A. Parchami, S. Ç. Onar, B. Öztayşi, C. Kahraman, Process capability analysis using interval type-2 fuzzy sets, International Journal of Computational Intelligence Systems, 10(1) (2017), 721-733.
[42] W. L. Pearn, S. Kotz, N. L. Johnson, Distributional and inferential properties of process capability indices, Journal of Quality Technology, 24(4) (1992), 216-231.
[43] S. Pramanik, P. P. Dey, Bi-level linear programming problem with neutrosophic numbers, Neutrosophic Sets Systems, 21 (2018), 110-121.
[44] N. M. Radwan, M. B. Senousy, A. E. D. M. Riad, A new expert system for learning management systems evaluation based on neutrosophic sets, Expert Systems, 33(6) (2016), 548-558.
[45] R. M. Rizk-Allah, A. E. Hassanien, M. Elhoseny, A multi-objective transportation model under neutrosophic environment, Computers and Electrical Engineering, 69 (2018), 705-719.
[46] M. U. J. Sastri, I. P. Jayasimman, A. Rajkumar, Industrial robots using single valued neutrosophic fuzzy numbers, Advances in Mathematics: Scientific Journal, 9(10) (2020), 7865-7869.
[47] O. Senvar, C. Kahraman, Type-2 fuzzy process capability indices for non-normal processes, Journal of Intelligent and Fuzzy Systems, 27(2) (2014), 769-781.
[48] F. Smarandache, A unifying field in logics: Neutrosophic logic, Philosophy, American Research Press, 1999.
[49] S. Subasri, K. Selvakumari, Neutrosophic travelling salesman problem in trapezoidal fuzzy number using branch and bound technique, Journal of Physics: Conference Series, 1362 (2019), 1-9, Doi:10.1088/1742-6596/1362/1/012098.
[50] H. X. Sun, H. X. Yang, J. Z. Wu, Y. Ouyang, Interval neutrosophic numbers Choquet integral operator for multicriteria decision making, Journal of Intelligent and Fuzzy Systems, 28(6) (2015), 2443-2455.
[51] H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Single valued neutrosophic sets, Infinite Study, 2010.
[52] J. Wang, G. Wei, M. Lu, TODIM method for multiple attribute group decision making under 2-tuple linguistic neutrosophic environment, Symmetry, 10(486) (2018), 1-15.
[53] C. W. Wu, W. L. Pearn, S. Kotz, An overview of theory and practice on process capability indices for quality assurance, International Journal of Production Economics, 117(2) (2009), 338-359.
[54] Y. Yang, J. Hu, R. Sun, X. Chen, Medical tourism destinations prioritization using group decision making method with neutrosophic fuzzy preference relations, Scientia Iranica, 25(6) (2018), 3744-3764.
[55] W. Yang, Y. Pang, New multiple attribute decision making method based on DEMATEL and TOPSIS for multivalued interval neutrosophic sets, Symmetry, 10(115) (2018), 1-16.
[56] J. Ye, Trapezoidal neutrosophic set and its application to multiple attribute decision-making, Neural Computing and Applications, 26(5) (2015), 1157-1166.
[57] J. Ye, Some weighted aggregation operators of trapezoidal neutrosophic numbers and their multiple attribute decision making method, Informatica, 28(2) (2017), 387-402.
[58] L. A. Zadeh, Fuzzy sets, Information and Control, 177(8) (1965), 338-353.