[1] S. Andersson, A. Söderberg, S. Björklund, Friction models for sliding dry, boundary and mixed lubricated contacts, Tribology International, 40(4) (2007), 580-587.
[2] A. Bektache, B. Boukhezzar, Nonlinear predictive control of a DFIG-based wind turbine for power capture optimization, International Journal of Electrical Power and Energy Systems, 101 (2018), 92-102.
[3] B. Beltran, M. E. H. Benbouzid, T. Ahmed-Ali, High-order sliding mode control of a DFIG-based wind turbine for power maximization and grid fault tolerance, Conference: Electric Machines and Drives Conference, 2009. IEMDC ’09. IEEE International, 2009.
[4] B. Beltran, M. E. H. Benbouzid, T. Ahmed-Ali, Second-order sliding mode control of a doubly-fed induction generator driven wind turbine, IEEE Transactions on Energy Conversion, 27(2) (2012), 261-269.
[5] Z. Boudjema, A. Meroufel, E. Bounadja, Y. Djeriri, Nonlinear control of a doubly-fed induction generator supplied by a matrix converter for wind energy conversion systems, Journal of Electrical Engineering, 13 (2013), 60-68.
[6] Z. Boudjema, T. Rachid, Y. Djeriri, A. Yahdou, A novel direct torque control using second order continuous sliding mode of a doubly-fed induction generator for a wind energy conversion system, Turkish Journal of Electrical Engineering and Computer Sciences, 25 (2017), 965-975.
[7] B. Boukhezzar, H. Siguerdidjane, Nonlinear control of a variable-speed wind turbine using a two-mass model, IEEE Transactions on Energy Conversion, 26 (2011), 149-162.
[8] A. Boulkroune, N. Bounar, M. M′Saad, M. Farza, Indirect adaptive fuzzy control scheme based on observer for nonlinear systems: A novel SPR-filter approach, Neurocomputing, 135 (2014), 378-387, Doi: 10.1016/j.neucom.2013.12.011.
[9] A. Boulkroune, M. M′Saad, H. Chekireb, Design of a fuzzy adaptive controller for MIMO nonlinear time-delay systems with unknown actuator nonlinearities and unknown control direction, Information Sciences, 180(24) (2010), 5041-5059.
[10] A. Boulkroune, M. Tadjine, M. M′Saad, M. Farza, How to design a fuzzy adaptive controller based on observers for uncertain affine nonlinear systems, Fuzzy Sets and Systems, 159(8) (2008), 926-948.
[11] E. Bounadja, A. Djahbar, Z. Boudjema, Variable structure control of a doubly-fed induction generator for wind energy conversion systems, Energy Procedia, 50 (2014), 999-1007.
[12] N. Bounar, A. Boulkroune, F. Boudjema, Adaptive fuzzy control of doubly-fed induction machine, Control Engineering and Applied Informatics, 16 (2014), 98-110.
[13] N. Bounar, A. Boulkroune, F. Boudjema, M. M′Saad, M. Farza, Adaptive fuzzy vector control for a doubly-fed induction motor, Neurocomputing, 151 (2015), 756-769.
[14] N. Bounar, S. Labdai, A. Boulkroune, M. Farza, M. M′Saad, Adaptive fuzzy control scheme for variable-speed wind turbines based on a doubly-fed induction generator, Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 44 (2020), 629-641.
[15] H. Chaoui, P. Sicard, Adaptive fuzzy logic control of permanent magnet synchronous machines with nonlinear friction, IEEE Transactions on Industrial Electronics, 59(2) (2012), 1123-1133.
[16] M. Ghaemi, M. R. Akbarzadeh Totonchi, Indirect adaptive interval type-2 PI sliding mode control for a class of uncertain nonlinear systems, Iranian Journal of Fuzzy Systems, 11(5) (2014), 1-21.
[17] B. Kiruthiga, Implementation of first order sliding mode control of active and reactive power for DFIG based wind turbine, International Journal of Informative and Futuristic Research, 2(8) (2015), 2487-2497.
[18] X. Liu, Y. Han, C. Wang, Second-order sliding mode control for power optimisation of DFIG-based variable speed wind turbine, IET Renewable Power Generation, 11(2) (2017), 408-418.
[19] M. I. Martinez, A. Susperregui, G. Tapia, Second-order sliding-mode-based global control scheme for wind turbinedriven DFIGs subject to unbalanced and distorted grid voltage, IET Electric Power Applications, 11(6) (2017), 1013-1022.
[20] J. W. Moon, J. Gwon, J. W. Park, D. W. Kang, J. M. Kim, Feedback linearization control of doubly-fed induction generator under an unbalanced voltage, 8th International Conference on Power Electronics - ECCE Asia, (2011), 662-669.
[21] K. A. Naik, C. P. Gupta, E. Fernandez, Design and implementation of interval type-2 fuzzy logic-PI based adaptive controller for DFIG based wind energy system, International Journal of Electrical Power and Energy Systems, 115 (2020), 105468.
[22] F. A. Okou, O. Akhrif, M. Tarbouchi, Design of a nonlinear robust adaptive controller for a grid-connected doublyfed induction generator wind turbine, in 18th Mediterranean Conference on Control and Automation, MED10, (2010), 1603-1608.
[23] F. Poitiers, T. Bouaouiche, M. Machmoum, Advanced control of a doubly-fed induction generator for wind energy conversion, Electric Power Systems Research, 79 (2009), 1085-1096.
[24] M. M. Polycarpou, P. A. Ioannou, A robust adaptive nonlinear control design, in 1993 American Control Conference, (1993), 1365-1369.
[25] A. Sid Ahmed El Mehdi, M. ABID, Fuzzy sliding mode control applied to a doubly fed induction generator for wind turbines, Turkish Journal of Electrical Engineering and Computer Sciences, 23 (2015), 1673-1686, Doi: 10.3906/elk1404-64.
[26] O. Soares, H. Gon¸calves, A. Martins, A. Carvalho, Nonlinear control of the doubly-fed induction generator in wind power systems, Renewable Energy, 35(8) (2010), 1662-1670.
[27] A. Tohidi, H. Hajieghrary, M. A. Hsieh, Adaptive disturbance rejection control scheme for DFIG-based wind turbine: Theory and experiments, IEEE Transactions on Industry Applications, 52(3) (2016), 2006-2015.
[28] L. X. Wang, Adaptive fuzzy systems and control: Design and stability analysis, Prentice-Hall, 1994.
[29] B. Yang, L. Jiang, L. Wang, W. Yao, Q. H. Wu, Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine, International Journal of Electrical Power and Energy Systems, 74 (2016), 429-436.
[30] B. Yang, X. Zhang, T. Yu, H. Shu, Z. Fang, Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbine, Energy Conversion and Management, 133 (2017), 427-443.