[1] S. Abbasbandy, T. Allahviranloo, M. R. Balooch Shahryari, S. Salhshour, Fuzzy local fractional differential equations, International Journal of Industrial Mathematics, 4 (2012), 231-246.
[2] R. P. Agarwal, S. Arshad, D. O’Regan, V. Lupulescu, Fuzzy fractional integral equations under compactness type condition, Fractional Calculus and Applied Analysis, 51 (2012), 572-590.
[3] M. Z. Ahmad, M. K. Hasan, B. De Baets, Analytical and numerical solutions of fuzzy differential equations, Information Sciences, 236 (2013), 156-167.
[4] T. Allahviranloo, Fuzzy fractional differential operators and equations, Springer, Cham, 2020.
[5] T. Allahviranloo, A. Armand, Z. Gouyandeh, Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, Journal of Intelligent Fuzzy Systems, 26 (2014), 1481-1490.
[6] T. Allahviranloo, S. Salahshour, S. Abbasbandy, Explicit solutions of fractional differential equations with uncertainty, Soft Computing, 6 (2012), 297-302.
[7] S. Arshad, V. Lupulescu, On the fractional differential equations with uncertainty, Nonlinear Analysis, 74 (2011), 3685-3693.
[8] P. Balasubramaniam, S. Muralisankar, Existence and uniqueness of fuzzy solution for semilinear fuzzy integrodifferential equations with nonlocal conditions, Computers and Mathematics with Applications, 47(6-7) (2004), 1115-1122.
[9] L. C. Barros, L. T. Gomes, P. A, Tonelli, Fuzzy differential equations: An approach via fuzzification of the derivative operator, Fuzzy Sets and Systems, 230 (2013), 39-52.
[10] N. V. Hoa, P. V. Tri, T. T. Dao, I. Zelinka, Some global existence results and stability theorem for fuzzy functional differential equations, Journal of Intelligent and Fuzzy Systems, 28 (2015), 393-409.
[11] A. Khastan, J. J. Nieto, R. Rodríguez-López, Fuzzy delay differential equations under generalized differentiability, Information Sciences, 275 (2014), 145-167.
[12] H. V. Long, M. Ali, L. H. Son, M. Khan, D. T. Tu, A novel approach for fuzzy clustering based on neutrosophic association matrix, Computers and Industrial Engineering, 127 (2018), 1-11.
[13] M. T. Malinowski, On random fuzzy differential equations, Fuzzy Sets and Systems, 160 (2009), 3152-3165.
[14] M. T. Malinowski, Fuzzy and set-valued stochastic differential equations with local Lipschitz condition, IEEE Transactions on Fuzzy Systems, 23 (2015), 1891-1898.
[15] M. T. Malinowski, Random fuzzy fractional integral equations-theoretical foundations, Fuzzy Sets and Systems, 265 (2015), 39-62.
[16] M. T. Malinowski, Stochastic fuzzy differential equations of a non-increasing type, Communications in Nonlinear Science and Numerical Simulation, 33 (2015), 99-117.
[17] M. T. Malinowski, Fuzzy stochastic differential equations of decreasing fuzziness: Non-Lipschitz coefficients, Journal of Intelligent and Fuzzy Systems, 31 (2016), 13-25.
[18] M. Mazandarani, N. Pariz, A. V. Kamyad, Granular differentiability of fuzzy-number-valued functions, IEEE Transactions on Fuzzy Systems, 26 (2018), 310-323.
[19] K. S. Miller, B. Ross, An introduction to the fractional calculus and differential equations, John Wiley, New York, 1993.
[20] N. Najafi, T. Allahviranloo, Semi-analytical methods for solving fuzzy impulsive fractional differential equations, Journal of Intelligent and Fuzzy Systems, 33 (2017), 3539-3560.
[21] N. Najafi, T. Allahviranloo, Combining fractional differential transform method and reproducing kernel Hilbert space method to solve fuzzy impulsive fractional differential equations, Computational and Applied Mathematics, 39 (2020), 1-25.
[22] M. Najariyan, Y. Zhao, Fuzzy fractional quadratic regulator problem under granular fuzzy fractional derivatives, IEEE Transactions on Fuzzy Systems, 26 (2018), 2273-2288.
[23] J. J. Niet, R. Rodríguez-López, Some results on boundary value problems for fuzzy differential equations with functional dependence, Fuzzy Sets and Systems, 230 (2013), 92-118.
[24] J. R. Ockendon, A. B. Taylor, The dynamics of a current collection system for an electric locomotive, Proceedings of the Royal Society A, 322 (1971), 447-468.
[25] Y. Ogura, On stochastic differential equations with fuzzy set coefficients, soft methods for handling variability and imprecision, Springer, Berlin, 2008.
[26] J. Y. Park, J. U. Jeong, On random fuzzy functional differential equations, Fuzzy Sets and Systems, 223 (2013), 89-99.
[27] J. Priyadharsini, P. Balasubramaniam, Existence of fuzzy fractional stochastic differential system with impulses, Computational and Applied Mathematics, 39 (2020), 1-21.
[28] M. L. Puri, D. A. Ralescu, Differential of fuzzy functions, Journal of Mathematical Analysis and Applications, 91 (1983), 552-558.
[29] A. Rivaz, O. S. Fard, T. A. Bidgoli, On the existence and uniqueness of solutions for fuzzy fractional differential equations, Tbilisi Mathematical Journal, 10 (2017), 197-205.
[30] S. Salahshour, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Communication in Nonliner Science and Numerical Simulation, 17 (2012), 1372-1381.
[31] M. Senol, S. Atpinar, Z. Zararsiz, S. Salhshour, Approximate solution of time-fractional fuzzy partial differential equations, Computation and Applied Mathematics, 38 (2019), 2238-3603.
[32] N. T. K. Son, N. P. Dong, H. V. Long, L. H. Son, A. Khastan, Linear quadratic regulator problem governed by granular neutrosophic fractional differential equations, ISA Transactions, 97 (2019), 296-316.
[33] N. T. K. Son, N. P. Dong, L. H. Son, M. A. Basset, G. Monogaran, H. V. Long, On the stabilizability for a class of linear time-invariant systems under uncertainty, Circuits, Systems, and Signal Processing, 39 (2020), 919-960.
[34] N. T. K. Son, N. P. Dong, L. H. Son, H. V. Long, Towards granular calculus of single-valued neutrosophic functions under granular computing, Multimedia Tools and Applications, 79 (2020), 16845-16881.
[35] N. T. K. Son, H. V. Long, N. P. Dong, Fuzzy delay differential equations under granular differentiability with applications, Computational and Applied Mathematics, 38 (2019), 1-29.
[36] S. Tapaswini, D. Behera, Analysis of imprecisely defined fuzzy space-fractional telegraph equations, Pramana Journal of Physics, 32 (2020), 1-10.
[37] H. Vu, N. Van Hao, On impulsive fuzzy functional differential equations, Iranian Journal of Fuzzy Systems, 4 (2016), 79-94.
[38] L. A. Zadeh, Fuzzy sets, Information Control, 8 (1965), 338-353.