[1] S. S. G. Abhishekh, S. R. Singh, A score function-based method of forecasting using intuitionistic fuzzy time series, New Mathematics and Natural Computation, 14 (2018), 91-111.
[2] M. G. Akbari, G. Hesamian, Linear model with exact inputs and interval-valued fuzzy outputs, IEEE Transactions on Fuzzy Systems, 26 (2018), 518-530.
[3] S. Askari, N. Montazerin, M. H. F. Zarandi, A clustering based forecasting algorithm for multivariate fuzzy time series using linear combinations of independent variable, Applied Soft Computing, 35 (2015), 151-160.
[4] K. A’yun, A. M. N. Abadi, F. Y. Saptaningtyas, Application of weighted fuzzy time series model to forecast trans jogja’s passengers, International Journal of Applied Physics and Mathematics, 5 (2015), 76-85.
[5] E. Bas, E. Egrioglu, C. H. Aladag, U. Yolcu, Fuzzy time-series network used to forecast linear and nonlinear time series, Applied Intelligence, 43 (2015), 343-355.
[6] D. Bosq, Nonparametric statistics for stochastic process, Springer, New York, 1996.
[7] J. J. Buckley, Fuzzy statistics, studies in fuzziness and soft computing, Springer-Verlag, Berlin, 2006.
[8] O. Cagcag, U. Yolcu, E. Egrioglu, C. H. Aladag, A high order fuzzy time series forecasting method based on operation of intersection, Applied Mathematical Modelling, 40 (2016), 8750-8765.
[9] Q. Cai, D. Zhang, W. Zheng, S. C. H. Leung, A new fuzzy time series forecasting model combined with ant colony optimization and auto-regression, Knowledge-Based Systems, 74 (2015), 61-68.
[10] L. J. Cao, E. H. T. Francis, Support vector machine with adaptive parameters in financial time series forecasting, IEEE Transactions on Neural Networks, 14 (2003), 1506-1518.
[11] F. T. S. Chan, A. Samvedi, S. H. Chung, Fuzzy time series forecasting for supply chain disruptions, Industrial Management and Data Systems, 115 (2015), 419-435.
[12] S. M. Chen, S. W. Chen, Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships, Transactions on Cybernetics, 45 (2015), 405-417.
[13] C. H. Cheng, C. H. Chen, Fuzzy time series model based on weighted association rule for financial market forecasting, Expert System, 35 (2018), 23-30.
[14] S. H. Cheng, S. M. Chen, W. S. Jian, Fuzzy time series forecasting based on fuzzy logical relationships and similarity measures, Information Sciences, 327 (2016), 272-287.
[15] R. D. Cook, Detection of influential observations in linear regression, Technometrics, 19 (1977), 15-18.
[16] D. Dubois, P. Prade, Operations on fuzzy numbers, International Journal of Systems Science, 9 (1978), 613-626.
[17] R. Efendi, M. M. Deris, Z. Ismail, Implementation of fuzzy time series in forecasting of the non-stationary data, International Journal of Computational Intelligence and Applications, 15 (2016), 1-15.
[18] R. Efendi, Z. Ismail, M. M. Deris, A new linguistic out-sample approach of fuzzy time series for daily forecasting of Malaysian electricity load demand, Applied Soft Computing, 28 (2015), 422-430.
[19] S. Efromovich, Nonparametric curve estimation: Methods, theory and applications, New York, Springer, 1999.
[20] E. Egrioglu, C. H. Aladag, U. Yolcu, A. Z. Dalar, A hybrid high order fuzzy time series forecasting approach based on PSO and ANNs methods, American Journal of Intelligent Systems, 6 (2016), 22-29.
[21] E. Egrioglu, E. Bas, C. H. Aladag, U. Yolcu, Probabilistic fuzzy time series method based on artificial neural network, American Journal of Intelligent Systems, 6 (2016), 42-47.
[22] R. L. Eubank, J. D. Hart, P. Speckman, Trigonometric series regression estimators with an application to partially linear models, Journal of Multivariate Analysis, 32 (1990), 70-83.
[23] M. Fanyong, Z. Jinxian, Z. Qiang, The shapley function for fuzzy games with fuzzy characteristic functions, International Journal of Fuzzy Systems, 25 (2013), 23-35.
[24] C. Gang, W. Peng-fei, L. I. Jin-ling, Optimization algorithm for fuzzy time series model based on autocorrelation function, Control and Decision, 30 (2015), 1977-1802.
[25] S. S. Gautam, S. Singh, A refined method of forecasting based on high-order intuitionistic fuzzy time series data, Progress in Artificial Intelligence, 7 (2018), 339-350.
[26] H. Ghosh, S. Chowdhury, Prajneshu, An improved fuzzy time-series method of forecasting based on L-R fuzzy sets and its application, Journal of Applied Statistics, 43 (2016), 1128-1139, Doi:10.1080/02664763.2015.1092111.
[27] A. Ghotmar, P. G. Khot, P. Sharma, Forecasting model based on fuzzy time series with first order diffencing, International Journal of Mathematical Archive, 7 (2016), 75-79.
[28] G. Golub, M. Heath, G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21 (1979), 215-223.
[29] H. Guan, Z. Dai, A. Zhao, J. He, A novel stock forecasting model based on High-order-fuzzy-fluctuation trends and back propagation neural network, PLoS ONE, 13(2) (2018), Doi:10.1371/journal.pone.0192366.
[30] C. Gupta, G. Jain, D. K. Tayal, O. Castillo, ClusFuDE: Forecasting low dimensional numerical data using an improved method based on automatic clustering, fuzzy relationships and differential evolution, Engineering Applications of Artificial Intelligence, 71 (2018), 175-189.
[31] G. Hesamian, M. G. Akbari, A semi-parametric model for time series based on fuzzy data, IEEE Transactions on Fuzzy Systems, 26 (2018), 2953-2966.
[32] G. Hesamian, M. G. Akbari, Fuzzy absolute error distance measure based on a generalised difference operation, International Journal of Systems Science, Taylor and Francis Journals, 49(11) (2018), 2454-2462.
[33] M. Hudec, D. Praenka, Collecting and managing fuzzy data in statistical relational databases, Statistical Journal of the IAOS, 32 (2016), 245-255.
[34] W. S. Jian, Fuzzy forecasting based on fuzzy logical relationships, fuzzy trend logical relationship groups, k-means clustering algorithm, similarity measures and particle swarm optimization techniques, Information Sciences, 327 (2016), 272-287.
[35] C. T. Kelley, Iterative methods for optimization, SIAM, (1999).
[36] K. H. Lee, First course on fuzzy theory and applications, Springer-Verlag, Berlin, 2005.
[37] R. Li, Water quality forecasting of Haihe River based on improved fuzzy time series model, Desalination and Water Treatment, 106 (2018), 285-291.
[38] R. A. Maronna, D. R. Martin, V. J. Yohai, Robust statistics: Theory and methods, New York, John Wiley and Sons, 2006.
[39] T. C. Mills, Applied time series analysis: A practical guide to modelling and forecasting, London: Academic Press, 2019.
[40] D. C. Montgomery, Introduction to statistical quality control, John Wiley and Sons, New York, 2009.
[41] V. Novák, Detection of structural breaks in time series using fuzzy techniques, The International Journal of Fuzzy Logic and Intelligent Systems, 18 (2018), 1-12.
[42] T. O. Olatayo, A. I. Taiwo, Statistical modelling and prediction of rainfall time series data, Global Journal of Computer Science and Technology, 14 (2014), 1-9.
[43] T. T. H. Phan, A. Bigand, E. P. Caillault, A new fuzzy logic-based similarity measure applied to large gap imputation for uncorrelated multivariate time series, Applied Computational Intelligence and Soft Computing, (2018), 1-15.
[44] W. Qiu, C. Zhang, Z. Ping, Generalized fuzzy time series forecasting model enhanced with particle swarm optimization, International Journal of u- and e- Service, Science and Technology, 8 (2015), 129-140.
[45] W. Qiu, P. Zhang, Y. Wang, Fuzzy time series forecasting model based on automatic clustering techniques and generalized fuzzy logical relationship, Mathematical Problems in Engineering, (2015), 1-8.
[46] N. F. Rahim, M. Othman, R. Sokkalingam, E. A. Kadir, Forecasting crude palm oil prices using fuzzy rule-based time series method, IEEE Access, 6 (2018), 32216-32224.
[47] P. M. Robinson, Root-n-consistent semi-parametric regression, Econometrica, 56 (1988), 931-954.
[48] A. Roy, A novel multivariate fuzzy time series based forecasting algorithm incorporating the effect of clustering on prediction, Soft Computing, 20 (2016), 1991-2019.
[49] S. Rubinstein, A. Goor, A. Rotshtein, Time series forecasting of crude oil consumption using neuro-fuzzy inference, Journal of Industrial and Intelligent Information, 3 (2015), 84-90.
[50] K. Sabzi, T. Allahviranloo, S. Abbasbandy, A fuzzy generalized power series method under generalized Hukuhara differentiability for solving fuzzy Legendre differential equation, Soft Computing, 24 (2020), 8763-8779.
[51] A. Sachdeva, V. Sharma, A survey on stock forecasting model based on combined fuzzy genetic algorithm, International Journal of Advanced Research in Computer Science and Software Engineering, 5 (2015), 397-401.
[52] H. J. Sadaei, R. Enayatifar, F. G. Guimaraes, M. Mahmud, Z. A. Alzamil, Combining ARFIMA models and fuzzy time series for the forecast of long memory time series, Neurocomputing, 175 (2016), 782-796.
[53] S. Sakhuja, V. Jain, S. Kumar, C. Chandra, S. K. Ghildayal, Genetic algorithm based fuzzy time series tourism demand forecast model, Industrial Management and Data Systems, 116 (2016), 1-24.
[54] S. Sharma, M. Chouhan, A review: Fuzzy time series model for forecasting, International Journal of Advanced Science and Technology, 2 (2014), 32-35.
[55] B. W. Silverman, Density estimation, Chapman and Hall, 1986.
[56] P. Singh, A brief review of modeling approaches based on fuzzy time series, International Journal of Machine Learning and Cybernetics, 8 (2017), 397-420.
[57] L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Sets and Systems, 161 (2010), 1564-1584.
[58] B. Sun, H. Guo, H. R. Karimi, Y. Ge, S. Xiong, Prediction of stock index futures prices based on fuzzy sets and multivariate fuzzy time series, Neurocomputing, 151 (2015), 1528-1536.
[59] F. M. Tseng, G. H. Tzeng, A fuzzy seasonal ARIMA model for forecasting, Fuzzy Sets and Systems, 126 (2002), 367-376.
[60] Y. Wang, Y. Lei, X. Fan, Y. Wang, Intuitionistic fuzzy time series forecasting model based on intuitionistic fuzzy reasoning, Mathematical Problems in Engineering, (2016), 1-12.
[61] L. Wasserman, All of nonparametric statistics, New York, Springer, 2007.
[62] U. Yolcu, A new approach based on optimation of ratio for seasonal fuzzy time series, Iranian Journal of Fuzzy Systems, 13 (2016), 19-36.
[63] U. Yolcu, E. Bas, The forecasting of labour force participation and the unemployment rate in poland and turkey using fuzzy time series methods, Comparative Economic Research, 19 (2016), 5-25.
[64] O. C. Yolcu, H. K. Lam, A combined robust fuzzy time series method for prediction of time series, Neurocomputing, 247 (2017), 87-101.
[65] R. Zarei, M. Gh. Akbari, J. Chachi, Modeling autoregressive fuzzy time series data based on semiparametricmethods, Soft Computing, 24(10) (2020), 7295-7304.
[66] K. Zhang, Z. Li, H. F. Wang, H. X. Wang, Fuzzy time series prediction model and application based on fuzzy inverse, International Journal of Signal Processing, Image Processing and Pattern Recognition, 8 (2015), 121-128.