# On deferred statistical A-convergence of fuzzy sequence and applications

Document Type : Research Paper

Authors

1 Department of Mathematics, School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar-751024, India

2 Al-Qaryah, Street No. 1 (West), Doharra, Aligarh 202002, India

3 Institute of Mathematics and Applications, Bhubaneswar-751029, Odisha, India

Abstract

This paper introduces the idea of deferred-statistical A-convergence of order β of the sequence of  fuzzy numbers by using  a regular matrix Aand deferred Ces\`{a}ro mean \$D_{p,q}\$. Also,  we establish some relations between the proposed idea and the strong  deferred A-summability of  sequences of fuzzy  numbers. As an application, we apply this newly  statistical convergence for proving fuzzy Korovkin-type approximation theorem. Some illustrative examples are provided to justify the results obtained from this investigation.

Keywords 20.1001.1.17350654.2022.19.2.10.2

#### References

 R. P. Agnew, On deferred Ces`aro mean, Annals of Mathematics, 33 (1932), 413-421.
 H. Aktuğlu, Korovkin type approximation theorems proved via A-statistical convergence, Journal of Computational Applied Mathematics, 259 (2014), 174-181.
 Y. Altin, M. Mursaleen, H. Altınok, Statistical summability (C, 1) for sequences of fuzzy real numbers and a Tauberian theorem, Journal of Intelligence and Fuzzy Systems, 21(6) (2010), 379-384.
 H. Altınok, Statistical convergence of order β for generalized difference sequences of fuzzy numbers, Journal of Intelligence and Fuzzy Systems, 26 (2014), 847-856.
 H. Altınok, R. Colak, M. Et, λ-difference sequences spaces of fuzzy numbers, Fuzzy Sets and Systems, 60(21) (2009), 3128-3139.
 H. Altınok, M. Et, Statistical convergence of order (β, γ) for sequence of fuzzy numbers, Soft Computing, 23 (2019), 6017-6022.
 G. A. Anastassiou, Fuzzy random Korovkin theory and inequalities, Mathematical Inequalities and Applications, 10 (2007), 63-94.
 G. A. Anastassiou, O. Duman, Statistical fuzzy approximation by fuzzy positive linear operators, Computers and Mathematics with Applications, 55 (2008), 573-580.
 P. Baliarsingh, On statistical deferred A-convergence of uncertain sequences, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 29(4) (2021), 499-515.
 P. Baliarsingh, S. Dutta, On certain Toeplitz matrices via difference operator and their applications, Afrika Matematika, 27 (2016), 781-793.
 P. Baliarsingh, U. Kadak, M. Mursaleen, On statistical convergence of difference sequences of fractional order and related Korovkin type approximation theorems, Quaestiones Mathematicae, 41(8) (2018), 1117-1133.
 F. Başar, Summability theory and its applications, Bentham Science Publications, Istanbul-2012, eISBN: 978- 160805-252.
 N. L. Braha, H. M. Srivastava, S. A. Mohiuddine, A Korovkins type approximation theorem for periodic functions via the statistical summability of the generalized De la Vallee Poussin mean, Applied Mathematics and Computations, 228 (2014), 162-169.
 R. Çolak, Statistical convergence of order α, Modern Methods in Analysis and its Applications (Anamaya Publ. New Delhi, India), (2010), 121-129.
 J. S. Connor, The statistical and strong p-cesaro convergence of sequence, Analysis, 8 (1988), 47-63.
 R. G. Cooke, Infinite matrices and sequence spaces, Macmillan and Co, London, 1950.
 S. Dutta, P. Baliarsingh, On certain new difference sequence spaces generated by infinite matrices, Thai Journal of Mathematics, 11(1) (2012), 75-86.
 O. H. H. Edely, M. Mursaleen, On statistical A-summability, Mathematical and Computer Modelling, 49(3-4) (2009), 672-680.
 H. Fast, Sur la convergence statistique, Colloquium Mathematics, 2 (1951), 241-244.
 J. A. Fridy, On statistical convergence, Analysis, 5(4) (1985), 301-313.
 A. D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain Journal of Mathematics, 32(1) (1980), 129-138.
 B. Hazarika, E. Savas, Some I-convergent λ-summable difference sequences spaces of fuzzy real numbers defined by a sequence of Orlicz functions, Mathematical and Computer Modelling, 54 (2011), 2986-2998.
 U. Kadak, F. Başar, Power series with real or fuzzy coeffcients, Filomat, 25(3) (2012), 519-528.
 E. Kolk, Matrix summability of statistically convergent sequences, Analysis, 13 (1993), 77-83.
 P. P. Korovkin, Linear operators and approximation theory, Delhi 1960, Hindustan Publishing Corporation, 1960.
 M. Kü¸cükaslan, M. Yılmaztürk, On deferred statistical convergence of sequences, Kyungpook Mathematical Journal, 56 (2016), 357-366.
 M. Matloka, Sequence of fuzzy number, Busefal, 28 (1986), 28-37.
 S. A. Mohiuddine, B. A. S. Alamri, Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, Revista de la Real Academia de Ciencias Exactas, Físicasy Naturales. Serie A. Matemáticas, 113 (2019), 1955-1973.
 S. A. Mohiuddine, A. Asiri, B. Hazarika, Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems, International Journal of General Systems, 48(5) (2019), 492-506.
 M. Mursaleen, F. Başar, Sequence spaces: Topics in modern summability theory, CRC Press, Taylor and Francis Group, Series: Mathematics and Its Applications, Boca Raton, London, New York, 2020.
 M. Mursaleen, V. Karakaya, M. Ertürk, F. Gürsoy, Weighted statistical convergence and its application to Korovkin type approximation theorem, Applied Mathematics and Computations, 218 (2012), 9132-9137.
 M. Mursaleen, S. A. Mohiuddine, Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos Solitons Fractals, 41(5) (2009), 2414-2421.
 S. Nanda, On sequences of fuzzy number, Fuzzy Sets and Systems, 33 (1989), 123-126.
 L. Nayak, G. Das, B. K. Ray, An estimate of the rate of convergence of Fourier series inthegeneralized Hölder metric by deferred cesáro mean, Journal of Mathematical Analysis and Applications, 420 (2014), 563-575.
 F. Nuray, E. Savas, Statistical convergence of sequences of fuzzy real numbers, Mathematical Slovaca, 45(3) (1995), 269-273.
 M. L. Puri, D. A. Ralescu, Differentials for fuzzy functions, Journal of Mathematical Analysis and Applications, 91 (1983), 552-558.
 T. Salat, On statistical convergent sequence of fuzzy real numbers, Mathematical Slovaca, 30(2) (1980), 139-150.
 E. Savas, M. Mursaleen, On statistically convergent double sequence of fuzzy numbers, Information Science, 162 (2004), 183-192.
 I. J. Schoenberg, The integrability of certain function and related summability methods, American Mathematical Monthly, 66 (1959), 361-375.
 Ö. Talo, F. Başar, On the space bvp(F) of sequences of p-bounded variation of fuzzy numbers, Acta Mathematica Sinica, English Series, 24(7) (2008), 1205-1212.
 Ö. Talo, F. Başar, Determination of the duals of classical sets of sequences of fuzzy numbers and related matrix transformations, Computers and Mathematics with Applications, 58(4) (2009), 717-733.
 Ö. Talo, F. Başar, Certain spaces of sequences of fuzzy numbers defined by a modulus function, Demonstratio Mathematics, 43(1) (2010), 139-149.
 Ö. Talo, F. Başar, Quasilinearity of the classical sets of sequences of fuzzy numbers and some related results, Taiwanese Journal of Mathematics, 14(5) (2010), 1799-1819.
 B. K. Tripathy, S. Nanda, Absolute value of fuzzy real number and fuzzy sequence spaces, Journal of Fuzzy Mathematics, 8 (2000), 883-892.
 L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.