[1] E. M. Alfsen, Compact convex sets and boundary integrals, Springer-Verlag, Berlin, 1971.
[2] A. Dvurečenskij, States on wEMV-algebras, Bollettino dell’Unione Matematica Italiana, 13 (2020), 515-527.
[3] A. Dvurečenskij, States on weak pseudo EMV-algebras. I. States and states morphisms, Iranian Journal of Fuzzy Systems, 19(4) (2022), 1-15.
[4] A. Dvurečenskij, O. Zahiri, States on EMV-algebras, Soft Computing, 23 (2019), 7513-7536.
[5] A. Dvurečenskij, O. Zahiri, Pseudo EMV-algebras. I. Basic properties, Journal of Applied Logics–IfCoLog Journal of Logics and their Applications, 6 (2019), 1285-1327.
[6] A. Dvurečenskij, O. Zahiri, Pseudo EMV-algebras. II. Representation and states, Journal of Applied Logics–IfCoLog Journal of Logics and their Applications, 6 (2019), 1329-1372.
[7] A. Dvurečenskij, O. Zahiri, Weak pseudo EMV-algebras. I. Basic properties, Journal of Applied Logics–IfCoLog Journal of Logics and their Applications, 8 (2021), 2365-2399.
[8] A. Dvurečenskij, O. Zahiri, Weak pseudo EMV-algebras. II. Representation and subvarieties, Journal of Applied Logics–IfCoLog Journal of Logics and their Applications, 8 (2021), 2401-2433.
[9] K. R. Goodearl, Partially ordered Abelian groups with interpolation, Mathematical Surveys and Monographs, No. 20, American Mathematics Society, Providence, Rhode Island, 1986.
[10] J. L. Kelley, General topology, Van Nostrand, Priceton, New Jersey, 1955.
[11] T. Kroupa, Every state on semisimple MV-algebra is integral, Fuzzy Sets and Systems, 157 (2006), 2771-2782.
[12] G. Panti, Invariant measures in free MV-algebras, Communications in Algebra, 36 (2008), 2849-2861.