[1] J. Andreu-Perez, F. Cao, H. Hagras, G. Z. Yang, A self-adaptive online brain-machine interface of a humanoid robot through a general type-2 fuzzy inference system, IEEE Transactions on Fuzzy Systems, 26 (2018), 101-116.
[2] K. K. Ang, Q. Chai, M. Pasquier, POPFNN-CRI(S): Pseudo outer product based fuzzy neural network using the compositional rule of inference and singleton fuzzifier, IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, 33 (2003), 838-849.
[3] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
[4] K. Atanassov, Intuitionistic fuzzy sets: Theory and applications, Physica-Verlag, Heidelberg, Springer, 1999.
[5] M. Baczyński, B. Jayaram, On the characterizations of (S,N)-implications, Fuzzy Sets and Systems, 158 (2007), 1713-1727.
[6] P. Burillo, H. Bustince, Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets, Fuzzy Sets and Systems, 78 (1996), 305-316.
[7] C. Cornelis, G. Deschrijver, E. E. Kerre, Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: Construction, classification, application, International Journal of Approximate Reasoning, 35 (2004), 55-95.
[8] S. S. Dai, Logical foundation of symmetric implicational methods for fuzzy reasoning, Journal of Intelligent and Fuzzy Systems, 39 (2020), 1089-1095.
[9] G. Deschrijver, C. Cornelis, E. E. Kerre, Class of intuitionistic fuzzy t-norms satisfying the residuation principle, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11 (2003), 691-709.
[10] G. Deschrijver, C. Cornelis, E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Transactions on Fuzzy Systems, 12 (2004), 45-61.
[11] J. Fodor, M. Roubens, Fuzzy preference modeling and multicriteria decision support, Kluwer Academic Publishers, Dordrecht, 1994.
[12] D. H. Hong, S. Y. Hwang, A note on the value similarity of fuzzy systems variable, Fuzzy Set and Systems, 66 (1994), 383-386.
[13] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer Academic Publishers, Dordrecht, 2000.
[14] H. W. Liu, New similarity measures between intuitionistic fuzzy sets and between elements, Mathematical and Computer Modelling, 42 (2005), 61-70.
[15] M. X. Luo, B. Liu, Robustness of interval-valued fuzzy inference triple I algorithms based on normalized Minkowski distance, Journal of Logical and Algebraic Methods, 86 (2017), 298-307.
[16] M. X. Luo, Y. J. Wang, Interval-valued fuzzy reasoning full implication algorithms based on the t-representable t-norm, International Journal of Approximate Reasoning, 122 (2020), 1-8.
[17] M. X. Luo, Y. J. Wang, R. R. Zhao, Interval-valued fuzzy reasoning method based on similarity measure, Journal of Logical and Algebraic Methods, 113 (2020), 100541.
[18] M. Mas, M. Monserrat, J. Torrens, E. Trillas, A survey on fuzzy implication functions, IEEE Transactions on Fuzzy Systems, 15 (2007), 1107-1121.
[19] P. Melo-Pinto, P. Couto, H. Bustince, et al., Image segmentation using Atanassov’s intuitionistic fuzzy sets, Expert Systems and Applications, 40 (2013), 15-26.
[20] D. W. Pei, Unified full implication algorithms of fuzzy reasoning, Information Sciences, 178 (2008), 520-530.
[21] D. W. Pei, Formalization of implication based fuzzy reasoning method, International Journal of Approximate Reasoning, 53 (2012), 837-846.
[22] E. Szmidt, J. Kacprzyk, Entropy for intuitionistic fuzzy sets, Fuzzy Sets and Systems, 118 (2001), 467-477.
[23] Y. M. Tang, X. H. Hu, W. Pedrycz, X. C. Song, Possibilistic fuzzy clustering with high-density viewpoint, Neurocomputing, 329 (2019), 407-423.
[24] Y. M. Tang, W. Pedrycz, On the α(u,v)-symmetric implicational method for R- and (S, N)-implications, International Journal of Approximate Reasoning, 92 (2018), 212-231.
[25] Y. M. Tang, W. Pedrycz, Oscillation bound estimation of perturbations under Bandler-Kohout subproduct, IEEE Transactions on Cybernetics, (2021). DOI: 10.1109/TCYB.2020.3025793.
[26] Y. M. Tang, F. J. Ren, W. Pedrycz, Fuzzy c-means clustering through SSIM and patch for image segmentation, Applied Soft Computing, 87 (2020), 1-16.
[27] Y. M. Tang, X. Z. Yang, Symmetric implicational method of fuzzy reasoning, International Journal of Approximate Reasoning, 54 (2013), 1034-1048.
[28] M. Verma, K. K. Shukla, Fuzzy metric space induced by intuitionistic fuzzy points and its application to the orienteering problem, IEEE Transactions on Fuzzy Systems, 24 (2016), 483-488.
[29] G. J. Wang, On the logic foundation of fuzzy reasoning, Information Sciences, 117 (1999), 47-88.
[30] G. J. Wang, Formalized theory of general fuzzy reasoning, Information Sciences, 160 (2004), 251-266.
[31] G. J. Wang, J. Y. Duan, On robustness of the full implication triple I inference method with respect to finer measurements, International Journal of Approximate Reasoning, 55 (2014), 787-796.
[32] G. J. Wang, L. Fu, Unified forms of triple I method, Computers and Mathematics with Applications, 49 (2005), 923-932.
[33] X. Y. Yang, F. S. Yu, W. Pedrycz, Long-term forecasting of time series based on linear fuzzy information granules and fuzzy inference system, International Journal of Approximate Reasoning, 81 (2017), 1-27.
[34] L. A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transactions on Systems, Man, and Cybernetics, 3 (1973), 28-44.
[35] J. C. Zhang, X. Y. Yang, Some properties of fuzzy reasoning in propositional fuzzy logic systems, Information Sciences, 180 (2010), 4661-4671.
[36] M. C. Zheng, Z. K. Shi, Y. Liu, Triple I methods of approximate reasoning on Atanassov’s intuitionistic fuzzy sets, International Journal of Approximate Reasoning, 55 (2014), 1369-1382.