[1] M. Akram, G. Ali, X. Peng, M. Z. Ul Abidin, Hybrid group decision-making technique under spherical fuzzy n-soft expert sets, Artificial Intelligence Review, (2021), 1-47.
[2] F. J. André, C. Romero, Computing compromise solutions: On the connections between compromise programming and composite programming, Applied Mathematics and Computation, 195(1) (2008), 1-10.
[3] I. M. Ar, I. Erol, I. Peker, A. I. Ozdemir, T. D. Medeni, I. T. Medeni, Evaluating the feasibility of blockchain in logistics operations: A decision framework, Expert Systems with Applications, 158 (2020), 113543.
[4] K. D. Atalay, G. F. Can, A new hybrid intuitionistic approach for new product selection, Soft Computing, 22(8) (2018), 2633-2640.
[5] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
[6] K. Atanassov, Intuitionistic fuzzy sets: Theory and applications, Volume 283, Springer, 1999.
[7] E. Ballestero, Compromise programming: A utility-based linear-quadratic composite metric from the trade-off between achievement and balanced (non-corner) solutions, European Journal of Operational Research, 182(3) (2007), 1369- 1382.
[8] E. Ballestero, C. Romero, Multiple criteria decision making and its applications to economic problems, Kluwer Academic Publishers, 1998.
[9] J. Berk, P. DeMarzo, Corporate finance, Global Edition, 5th ed. Pearson Australia, 2016.
[10] A. Bilbao-Terol, B. Pérez-Gladish, M. Arenas-Parra, M. V. Rodríguez-Uría, Fuzzy compromise programming for portfolio selection, Applied Mathematics and Computation, 173(1) (2006), 251-264.
[11] R. Biswas, On fuzzy sets and intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, 3(1) (1997), 3-11.
[12] R. A. Brealey, S. C. Myers, F. Allen, Principles of corporate finance, McGraw-Hill Education, 2019.
[13] G. Büyüközkan, F. Göçer, Y. Karabulut, A new group decision making approach with IF AHP and IF VIKOR for selecting hazardous waste carriers, Measurement, 134 (2019), 66-82.
[14] C. Carlsson, R. Fuller, On possibilistic mean value and variance of fuzzy numbers, Fuzzy Sets and Systems, 122(2) (2001), 315-326.
[15] K. H. Chang, A novel supplier selection method that integrates the intuitionistic fuzzy weighted averaging method and a soft set with imprecise data, Annals of Operations Research, 272(1-2) (2019), 139-157.
[16] B. C. Cuong, V. Kreinovich, Picture fuzzy sets-a new concept for computational intelligence problems, In 2013 Third World Congress on Information and Communication Technologies, IEEE, (2013), 1-6.
[17] M. Delgado, M. A. Vila, W. Voxman, On a canonical representation of fuzzy numbers, Fuzzy Sets and Systems, 93(1) (1998), 125-135.
[18] J. Dong, S. Wan, A new method for solving fuzzy multi-objective linear programming problems, Iranian Journal of Fuzzy Systems, 16(3) (2019), 145-159.
[19] J. González-Pachón, C. Romero, Bentham, Marx and Rawls ethical principles: In search for a compromise, Omega, 62 (2016), 47-51.
[20] P. Grzegorzewski, Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric, Fuzzy Sets and Systems, 148(2) (2004), 319-328.
[21] Q. Gu, Z. Xuan, A new approach for ranking fuzzy numbers based on possibility theory, Journal of Computational and Applied Mathematics, 309 (2017), 674-682.
[22] C. Kahraman, F. K. Gündogdu, Decision making with spherical fuzzy sets, Volume 392, Springer, 2021.
[23] M. Kannegiesser, H. O. Günther, O. Gylfason, Sustainable development of global supply chains-part 2: Investigation of the European automotive industry, Flexible Services and Manufacturing Journal, 26(1) (2014), 48-68.
[24] N. A. Khan, O. A. Razzaq, A. Chakraborty, S. P. Mondal, S. Alam, Measures of linear and nonlinear interval-valued hexagonal fuzzy number, International Journal of Fuzzy System Applications, 9(4) (2020), 21-60.
[25] A. Kumar, R. Anbanandam, Environmentally responsible freight transport service providers’ assessment under data-driven information uncertainty, Journal of Enterprise Information Management, 34(1) (2020), 506-542.
[26] E. S. Lee, R. J. Li, Fuzzy multiple objective programming and compromise programming with Pareto optimum, Fuzzy Sets and Systems, 53(3) (1993), 275-288.
[27] D. F. Li, A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems, Computers and Mathematics with Applications, 60(6) (2010), 1557-1570.
[28] H. Liao, X. Mi, X. Xu, J. Xu, F. Herrera, Intuitionistic fuzzy analytic network process, IEEE Transactions on Fuzzy Systems, 26(5) (2018), 2578-2590.
[29] S. Opricovic, Fuzzy VIKOR with an application to water resources planning, Expert Systems with Applications, 38(10) (2011), 12983-12990.
[30] S. Opricovic, G. H. Tzeng, Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS, European Journal of Operational Research, 156(2) (2004), 445-455.
[31] R. J. Orsato, P. Wells, U-turn: The rise and demise of the automobile industry, Journal of Cleaner Production, 15(11-12) (2007), 994-1006.
[32] D. Pla-Santamaria, M. Bravo, J. Reig-Mullor, F. Salas-Molina, A multicriteria approach to manage credit risk under strict uncertainty, Top, 29(2) (2021), 494-523.
[33] P. Prodanovic, S. P. Simonovic, Fuzzy compromise programming for group decision making, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 33(3) (2003), 358-365.
[34] A. Raj Mishra, G. Sisodia, K. Raj Pardasani, K. Sharma, Multi-criteria it personnel selection on intuitionistic fuzzy information measures and ARAS methodology, Iranian Journal of Fuzzy Systems, 17(4) (2020), 55-68.
[35] P. Rajarajeswari, A. S. Sudha, R. Karthika, A new operation on hexagonal fuzzy number, International Journal of Fuzzy Logic Systems, 3(3) (2013), 15-26.
[36] O. A. Razzaq, M. Fahad, N. A. Khan, Different variants of pandemic and prevention strategies: A prioritizing framework in fuzzy enviroment, Results in Physics, 28 (2021), 104564.
[37] J. Reig-Mullor, D. Pla-Santamaria, A. Garcia-Bernabeu, F. Salas-Molina, Novel distance measure in fuzzy TOPSIS to improve ranking process: An application to the Spanish grocery industry, Economic Computation and Economic Cybernetics Studies and Research, 53(1) (2019), 125-140.
[38] C. Romero, A note on distributive equity and social efficiency, Journal of Agricultural Economics, 52(2) (2001), 110-112.
[39] T. L. Saaty, The analytic hierarchy process, Mc Graw-Hill, 1980.
[40] F. Smarandache, A unifying field in logics, neutrosophy: Neutrosophic probability, set and logic, American Research Press, 1999.
[41] V. Torra, Hesitant fuzzy sets, International Journal of Intelligent Systems, 25(6) (2010), 529-539.
[42] I. B. Turksen, Interval valued fuzzy sets based on normal forms, Fuzzy Sets and Systems, 20(2) (1986), 191-210.
[43] N. Vafaei, R. A. Ribeiro, L. M. Camarinha-Matos, Normalization techniques for multi-criteria decision making: Analytical hierarchy process case study, In Doctoral Conference on Computing, Electrical and Industrial Systems, Springer, (2016), 261-269.
[44] A. Venturelli, F. Caputo, R. Leopizzi, G. Mastroleo, C. Mio, How can CSR identity be evaluated? A pilot study using a fuzzy expert system, Journal of Cleaner Production, 141 (2017), 1000-1010.
[45] S. P. Wan, D. F. Li, Z. F. Rui, Possibility mean, variance and covariance of triangular intuitionistic fuzzy numbers, Journal of Intelligent and Fuzzy Systems, 24(4) (2013), 847-858.
[46] S. P. Wan, F. Wang, G. L. Xu, J. Y. Dong, J. Tang, An intuitionistic fuzzy programming method for group decision making with interval-valued fuzzy preference relations, Fuzzy Optimization and Decision Making, 16(3) (2017), 269-295.
[47] Z. Xu, H. Liao, Intuitionistic fuzzy analytic hierarchy process, IEEE Transactions on Fuzzy Systems, 22(4) (2013), 749-761.
[48] R. R. Yager, A. M. Abbasov, Pythagorean membership grades, complex numbers, and decision making, International Journal of Intelligent Systems, 28(5) (2013), 436-452.
[49] P. L. Yu, A class of solutions for group decision problems, Management Science, 19(8) (1973), 936-946.
[50] L. A. Zadeh, Information and control, Fuzzy Sets, 8(3) (1965), 338-353.
[51] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Information Sciences, 8(3) (1975), 199-249.
[52] E. K. Zavadskas, Z. Turskis, A new logarithmic normalization method in games theory, Informatica, 19(2) (2008), 303-314.
[53] M. Zeleny, Compromise programming, In Multiple Criteria Decision Making, University of South Carolina Press, (1973), 262-301.