Copula-based Berkson measurement error models

Document Type : Research Paper


1 Department of Statistics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran

2 Department of Statistics, Faculty of Mathematics and Computer, Shahid Bahonar University, Kerman, Iran



In this work, we consider the joint distribution function as well as the copula of $(X+Z,Y)$ where the random vector $(X, Y, Z)$  is characterized by a copula $C_{X,Y,Z}$. We use this copula to analyze a Berkson measurement error model. By presenting a general form of a Berkson measurement error model with copula-dependent random variables, we investigate some of its special cases. Some theoretical results, several examples as well as a simulation study, are proposed for illustration.


[1] P. Arbenz, P. Embrechts, G. Puccetti, The AEP algorithm for the fast computation of the distribution of the sum of dependent random variables, Bernoulli, 17(2) (2011), 562-591.
[2] J. Berkson, Are there two regressions?, Journal of the American Statistical Association, 45(250) (1950), 164-180.
[3] J. Buonaccorsi, Measurement error: Models, methods, and applications, CRC press, 2010.
[4] R. J. Carroll, D. Ruppert, L. A. Stefanski, C. M. Crainiceanu, Measurement error in nonlinear models: A modern perspective, CRC press, 2006.
[5] X. Chen, H. Hong, D. Nekipelov, Nonlinear models of measurement errors, Journal of Economic Literature, 49(4) (2011), 901-937.
[6] V. Deffner, H. Küchenhoff, S. Breitner, A. Schneider, J. Cyrys, A. Peters, Mixtures of Berkson and classical covariate measurement error in the linear mixed model: Bias analysis and application to a study on ultra-fine particles, Biometrical Journal, 60(3) (2018), 480-497.
[7] A. Delaigle, P. Hall, P. Qiu, Nonparametric methods for solving the Berkson errors-in-variables problem, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(2) (2006), 201-220.
[8] F. Durante, C. Sempi, Principles of copula theory, CRC press, 2015.
[9] M. Fréchet, Au sujet de la note précédente, Comptes Rendus Hebdomadires des Séances de l’Académie des Sciences, 246(19) (1958), 2719-2720.
[10] W. A. Fuller, Measurement error models, John Wiley and Sons, 2009.
[11] R. Mesiar, A. Sheikhi, M. Komorníková, Random noise and perturbation of copulas, Kybernetika, 55(2) (2019), 422-434.
[12] R. B. Nelson, An introduction to copulas, Springer Science and Business Media, 2007.
[13] S. M. Schennach, Regressions with Berkson errors in covariates-a nonparametric approach, The Annals of Statistics, 41(3) (2013), 1642-1668.
[14] A. Sheikhi, F. Arad, R. Mesiar, L. Vavríková, Random noise and perturbation of copula with a copula induced noise, International Journal of General Systems, 49(8) (2020), 856-871.
[15] A. Sheikhi, R. Mesiar, Copula-based measurement error models, Iranian Journal of Fuzzy Systems, 17(6) (2020), 29-38.
[16] A. Sklar, Fonctions de répartition an dimensions et leurs marges, Publications de l’Institut de Statistique de l’Universit´e de Paris, 8 (1959), 229-231.
[17] L. Wang, Estimation of nonlinear models with Berkson measurement errors, The Annals of Statistics, 32(6) (2004), 2559-2579.
[18] R. Wang, Sum of arbitrarily dependent random variables, Electronic Journal of Probability, 19 (2014), 1-18.