Best-possible bounds on the set of copulas with a given value of Gini's gamma

Document Type : Research Paper

Author

Department of Mathematics, University of Almeria, 04120 Almeria, Spain

Abstract

In this note, pointwise best-possible (lower and upper) bounds on the set of copulas with a given value of the Gini's gamma coefficient are established. It is shown that, unlike the best-possible bounds on the set of copulas with a given value of other known measures such as Kendall's tau, Spearman's rho or Blomqvist's beta, the bounds found are not necessarily copulas, but proper quasi-copulas.

Keywords


[1] C. Alsina, R. B. Nelsen, B. Schweizer, On the characterization of a class of binary operations on distribution functions, Statistics and Probability Letters, 17(2) (1993), 85-89.
[2] G. Beliakov, E. de Amo, J. Fernández-Sánchez, M. Úbeda-Flores, Best-possible bounds on the set of copulas with a given value of Spearman’s footrule, Fuzzy Sets and Systems, 428 (2022), 138-152. Corrigendum, 153-155.
[3] F. Durante, C. Sempi, Principles of copula theory, Chapman and Hall/CRC, Boca Raton, 2016.
[4] C. Genest, J. Nešlehová, N. Ben Ghorbala, Spearman’s footrule and Gini’s gamma: A review with complements, Journal of Nonparametric Statistics, 22(8) (2010), 937-954.
[5] C. Genest, J. J. Quesada-Molina, J. A. Rodríguez-Lallena, C. Sempi, A characterization of quasi-copulas, Journal of Multivariate Analysis, 69(2) (1999), 193-205.
[6] C. Gini, L’Ammontare e la composizione della ricchezza delle nazioni, Fratelli Bocca, Torino, 1914.
[7] D. Kokol Bukovšek, T. Košir, B. Mojškerc, M. Omladič, Spearman’s footrule and Gini’s gamma: Local bounds for bivariate copulas and the exact region with respect to Blomqvist’s beta, Journal of Computational and Applied Mathematics, 390 (2021), 113385, 23 pages.
[8] R. B. Nelsen, Concordance and Gini’s measure of association, Journal of Nonparametric Statistics, 9(3) (1998), 227-238.
[9] R. B. Nelsen, An introduction to copulas, Second Edition, Springer, New York, 2006.
[10] R. B. Nelsen, J. J. Quesada-Molina, J. A. Rodríguez-Lallena, M. Úbeda-Flores, Bounds on bivariate distribution functions with given margins and measures of association, Communications in Statistics - Theory and Methods, 30(6) (2001), 1155-1162.
[11] R. B. Nelsen, J. J. Quesada-Molina, J. A. Rodríguez-Lallena, M. Úbeda-Flores, Best-possible bounds on sets of bivariate distribution functions, Journal of Multivariate Analysis, 90(2) (2004), 348-358.
[12] R. B. Nelsen, M. Úbeda-Flores, A comparison of bounds on sets of joint distribution functions derived from various measures of association, Communications in Statistics - Theory and Methods, 33(10) (2004), 2299-2305.
[13] R. B. Nelsen, M. Úbeda-Flores, The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas, Comptes Rendus Mathematique, 341(9) (2005), 583-586.
[14] C. Sempi, Quasi-copulas: A brief survey, in: M. Úbeda-Flores, E. de Amo Artero, F. Durante, J. Fernández Sánchez (Eds.), Copulas and Dependence Models with Applications, Springer, Cham, (2017), 203-224.
[15] A. Sklar, Fonctions de repartition á n dimensions et leurs marges, Publications de l’Institut Statistique de l’Université de Paris, 8 (1959), 229-231.
[16] P. Tankov, Improved Fréchet bounds and model-free pricing of multi-asset options, Journal of Applied Probability, 48(2) (2011), 389-403.