Supervisory adaptive interval type-2 fuzzy sliding mode control for planar cable-driven parallel robots using Grasshopper optimization

Document Type : Research Paper


Department of Electrical Engineering, Shahid Beheshti University, Tehran, Iran


Design of an adaptive supervisory fuzzy sliding mode control for a planar cable-driven parallel robot is aided in this paper. The fuzzy logic controller is proposed to generate the switching control signal without occurring the chattering problem. For this purpose, an adaptive mechanism is suggested for online tuning of the output gain of the fuzzy sliding mode controller. Moreover, for better tracking, a supervisory control system is considered for online tuning of the PID sliding surface gains. The Grasshopper Optimization Algorithm is suggested for optimization of the membership functions selected for the fuzzy sliding surface. The stability proof of the closed-loop system is derived by using the Lyapunov stability theorem. Simulation results are reported to show the merits of the proposed controller on reduced chatter, and system robustness against parameter uncertainty, load disturbance, and nonlinearities.


[1] S. Abdolshah, E. Barjuei, Linear quadratic optimal controller for cable-driven parallel robots, Frontiers of Mechanical Engineering, 4 (2015), 344-351.
[2] M. Aghaseyedabdollah, Y. Alaviyan, H. Azmi, A. Yazdizadeh, Fuzzy fractional order sliding mode controller design for a wind turbine with DFIG, Iranian Conference on Electrical Engineering, (2021), 637-642.
[3] D. Ayedi, M. Boujelben, C. Rekik, Hybrid type-2 fuzzy-sliding mode controller for navigation of mobile robot in an environment containing a dynamic target, Journal of Robotics, 2018 (2018), 1-10.
[4] R. Babaghasabha, M. A. Khosravi, H. D. Taghirad, Adaptive robust control of fullyconstrained cable driven parallel robots, Mechatronics, 25 (2015), 27-36.
[5] N. Bakhshinezhad, S. A. Mir Mohammad Sadeghi, A. R. Fathi, H. R. Mohammadi Daniali, Adaptive particularly tunable fuzzy particle swarm optimization algorithm, Iranian Journal of Fuzzy Systems, 17 (2020), 65-75.
[6] P. M. Bosscher, Disturbance robustness measures and wrench feasible workspace generation techniques for cable driven robots, Georgia Institute of Technology, (2004), URI:
[7] R. Bostelman, J. Albus, N. Dagalakis, A. Jacoff, J. Gross , Applications of the NIST RoboCrane, In Proceedings of the 5th International Symposium on Robotics and Manufacturing, 5 (1994), 1-9.
[8] M. Carpio, R. Saltaren, J. Viola, C. Calderon, J. Guerra, Proposal of a decoupled structure of fuzzy PID controllers applied to the position control in a planar CDPR, Electronics, 10(6) (2021), 745-766.
[9] N. Doikov, Y. Nesterov, Minimizing uniformly convex functions by cubic regularization of Newton method, Journal of Optimization Theory and Applications, 189 (2021), 317-339.
[10] H. R. Fahham, M. Farid, M. Khooran, Time optimal trajectory tracking of redundant planar cable-suspended robots considering both tension and velocity constraints, Journal of Dynamic Systems Measurementand Control, 133 (2011), 11-25.
[11] M. Gouttefarde, Characterizations of fully constrained poses of parallel cabledriven robots, a review. Proc ASME Int Des Tech Conf, (2008), 3-6.
[12] J. Hwang, Y. Kang, J. Park, D. Kim, Advanced interval type-2 fuzzy sliding mode control for robot manipulator, Computational Intelligence and Neuroscience, 2018 (2018), 1-11.
[13] F. Inel, A. Medjbouri, G. Carbone, A non-linear continuous-time generalized predictive control for a planar cabledriven parallel robot, In Actuators, Multidisciplinary Digital Publishing Institute, 10 (2021), 97-117.
[14] S. Kawamura, H. Kino, C. Won, High-speed manipulation by using parallel wire-driven robots, Robotica, 18(1) (2000), 13-21.
[15] S. A. Khalilpour, R. Khorrambakht, M. J. Harandi, H. D. Taghirad, P. Cardou, Robust dynamic sliding mode control of a deployable cable driven robot, Iranian Conference on Electrical Engineering (ICEE), (2018), 863-868.
[16] M. A. Khosravi, H. D. Taghirad, Robust PID control of fully-constrained cable driven parallel robots, Mechatronics, 24(2) (2014), 87-97.
[17] H. Kino, T. Yahiro, F. Takemura, T. Morizono, Robust PD control using adaptive compensation for completely restrained parallel-wire driven robots: Translational systems using the minimum number of wires under zero-gravity condition, IEEE Transactions on Robotics, 23 (2007), 803-812.
[18] E. Laroche, R. Chellal, L. Cuvillon, J. Gangloff, A preliminary study for H-infty control of parallel cable-driven manipulators, In Cable-Driven Parallel Robots, (2013), 353-369.
[19] J. Lenarčič, M. Michael, Advances in robot kinematics motion in man and machine, Springer Science Business Media, 2010.
[20] W. B. Lim, G. Yang, S. H. Yeo, S. K. Mustafa, A generic force-closure analysis algorithm for cable-driven parallel manipulators, Mechanism and Machine Theory, 46 (2011), 1265-1275.
[21] M. Mahmoodabadi, N. Babak, Fuzzy adaptive robust proportional-integral-derivative control optimized by the multiobjective grasshopper optimization algorithm for a nonlinear quadrotor, Journal of Vibration and Control, 26 (2020), 1574-1589.
[22] J. Mendel, M. John, R. John, F. Liu, Interval type-2 fuzzy logic systems made simple, IEEE Transactions on Fuzzy Systems, 14(6) (2006), 808-821.
[23] N. Nafia, E. Abdeljalil, H. Ayad, M. Mjahed, A robust type-2 fuzzy sliding mode controller for disturbed MIMO nonlinear systems with unknown dynamics, Automatika, 59 (2018), 194-207.
[24] H. Navvabi, A. Markazi, Hybrid position/force control of stewart manipulator using extended adaptive fuzzy sliding mode controller (E-AFSMC), ISA Transactions, 88 (2019), 280-295.
[25] S. R. Oh, S. K. Agrawal, Generation of feasible set points and control of a cable robot, IEEE Transactions on Robotics, 22(3) (2006), 551-558.
[26] M. H. Qais, H. M. Hasanienand, S. Alghuwainem, Whale optimization algorithm based Sugeno fuzzy logic controller for fault ride through improvement of grid connected variable speed wind generators, Engineering Applications of Artificial Intelligence, 87 (2020), DOI:10.1016/j.engappai.2019.103328.
[27] M. S. Qureshi, P. Swarnkar, S. Gupta, A supervisory on-line tuned fuzzy logic-based sliding mode control for robotics an application to surgical robots, Robotics and Autonomous Systems, 109 (2018), 68-85.
[28] N. Quynh, N. W. Yao, Y. Thi, A novel robust adaptive control using RFWNNs and backstepping for industrial robot manipulators with dead-zone, Journal of Intelligent and Robotic Systems, 98 (2020), 679-692.
[29] M. Roopaei, M. Zolghadri, B. Ranjbar, T. Lin, Synchronization of two different chaotic systems using novel adaptive interval type-2 fuzzy sliding mode control, Nonlinear Dynamics, 66 (2011), 667-680.
[30] A. S. Shaalan, A. Negar, M. Bardini, M. Sharaf, Embedded fuzzy sliding mode control for polymer extrusion process, ISA Transactions, 103 (2020), 237-251.
[31] S. H. Saremi, S. Mirjalili, A. Lewis, Grasshopper optimisation algorithm: Theory and application, Advances in Engineering Software, 105 (2017), 30-47.
[32] S. Tripathi, A. Shrivastava, K. Jana, Self-tuning fuzzy controller for sun-tracker system using Gray Wolf Optimization (GWO) technique, ISA Transactions, 101 (2020), 50-59.
[33] M. Wei-Lung, D. Yu Shiu, Precision trajectory tracking on XY motion stage using robust interval Type-2 fuzzy PI sliding mode control method, International Journal of Precision Engineering and Manufacturing, 21 (2020), 1-22.
[34] D. Zanotto, G. Rosati, S. Minto, A. Rossi, Sophia-3: A semiadaptive cable-driven rehabilitation device with a tilting working plane, IEEE Transactions on Robotics, 30 (2014), 974-979.
[35] K. Zheng, H. Youmin, W. Bo, Intelligent fuzzy sliding mode control for complex robot system with disturbances, European Journal of Control, 51 (2020), 95-109.