[1] L. Aliahmadipour, A. Taghavi, E. Eslami, An introduction to hesitant fuzzy data clustering, 4th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), Zahedan, Iran, (2015), 1-4.
[2] L. Aliahmadipour, V. Torra, E. Eslami, On hesitant fuzzy clustering and clustering of hesitant fuzzy data, In Fuzzy Sets, Rough Sets, Multisets and Clustering, Springer, Cham, 157-168.
[3] L. Aliahmadipour, V. Torra, E. Eslami, M. Eftekhari, A definition for hesitant fuzzy partitions, International Journal of Computational Intelligent System, 9 (2016), 497-505.
[4] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
[5] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms, Plenum Press, New York, (1981), 191-203.
[6] T. Chaira, A novel intuitionistic fuzzy C-means clustering algorithm and its application to medical images, Applied Soft Computing, 11 (2011), 1711-1717.
[7] Y. H. Chang, C. H. Yeh, Y. W. Chang, A new method selection approach for fuzzy group multicriteria decision making, Applied Soft Computing, 13 (2013), 2179-2187.
[8] T. Y. Chen, H. P. Wang, Y. Y. Lu, A multicriteria group decision-making approach based on interval-valued intuitionistic fuzzy sets: A comparative perspective, Expert Systems and Application, 38 (2011), 7647-7658.
[9] S. L. Chiu, Fuzzy model identification based on cluster estimation, Journal of Intelligent and Fuzzy System, 2 (1994), 267-278.
[10] J. Demsar, Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning Research, 7 (2006), 1-30.
[11] R. Duwairi, M. Abu-Rahmeh, A novel approach for initializing the spherical K-means clustering algorithm, Simulation Modelling Practice and Theory, 54 (2015), 49-63.
[12] M. Eftekhari, A. Mehrpooya, F. Saberi-Movahed, V. Torra, How fuzzy concepts contribute to machine learning, Studies in Fuzziness and Soft Computing, Springer, 416, (2022).
[13] M. Erisoglu, N. Calis, S. Sakallioglu, A new algorithm for initial cluster centers in k-means algorithm, Pattern Recognition Letters, 32 (2011), 1701-1705.
[14] B. S. Everitt, S. Landau, M. Leese, Cluster analysis, U. K.: Arnold, London, 2001.
[15] B. Farhadinia, A series of score functions for hesitant fuzzy sets, Information Sciences, 277 (2014), 102-110.
[16] M. Filipponea, F. Camastrab, F. Masulli, S. Rovetta, Asurvey of kernel and spectral methods for clustering, Pattern Recognition, 41 (2008), 176-190.
[17] A. Frank, A. Asuncion, UCI machine learning repository, University of California, School of Information and Computer Science, Irvine, CA, USA, 2010,
http://archive.ics.uci.edu/ml.
[18] I. Gath, A. Geva, Unsupervised optimal fuzzy clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, 7 (1989), 773-781.
[19] D. Graves, W. Pedrycz, Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study, Fuzzy Sets and Systems, 161 (2010), 522-543.
[20] Y. Guo, A. Sengur, NECM: Neutrosophic evidential c-means clustering algorithm, Neural Computing and Application, 26 (2014), 561-571.
[21] D. E. Gustafson, W. Kessel, Fuzzy clustering with a fuzzy covariance matrix, In: Proceedings of IEEE Conference on Decision Control, San Diego, (1979), 761-766.
[22] J. Han, M. Kamber, Data mining: Concepts and techniques, Morgan Kaufmann Publishers is an Imprint of Elsevier, 2009.
[23] A. Hatami-Marbini, M. Tavana, M. Moradi, F. Kangi, A fuzzy group electre method for safety and health assessment in hazardous waste recycling facilities, Safety Science, 51 (2013), 414-426.
[24] A. K. Jain, Data clustering: 50 years beyond k-means, Pattern Recognition Letters, 31 (2010), 651-666.
[25] L. Kaufman, P. J. Rousseeuw, Finding groups in data: An introduction to cluster analysis, John Wiley Sons, 1990.
[26] S. A. Mingoti, J. O. Lima, Comparing SOM neural network with fuzzy c-means, K-means and traditional hierarchical clustering algorithms, European Journal of Operational Research, 174 (2006), 1742-1759.
[27] W. Pedrycz, Allocation of information granularity in optimization and decision-making models: Towards building the foundations of granular computing, European Journal of Operational Research, 232 (2014), 137-145.
[28] A. H. Pilevar, M. Sukumar, GCHL: Agrid-clustering algorithm for high-dimensional very large spatial data bases, Pattern Recognition Letters, 26 (2005), 999-1010.
[29] E. Rashedi, A. Mirzaei, A hierarchical clusterer ensemble method based on boosting theory, Knowledge-Based Systems, 45 (2013), 83-93.
[30] B. Rezaee, A cluster validity index for fuzzy clustering, Fuzzy Sets and Systems, 161 (2010), 3014-3025.
[31] R. M. Rodriguez, L. Martinez, V. Torra, Z. S. Xu, F. Herrera, Hesitant fuzzy sets: State of the art and future directions, International Journal of Intelligent Systems, 29 (2014), 495-524.
[32] M. Sato, Y. Sato, Fuzzy clustering model for fuzzy data, Fuzzy Systems, International Joint Conference of the Fourth, (1995), 2123-2128.
[34] S. Theodoridis, K. Koutroumbas, Pattern recognition, Elsevier, 2009.
[35] V. Torra, Hesitant fuzzy sets, International Journal of Intelligent Systems, 25 (2010), 529-539.
[36] V. Torra, On the selection of m for fuzzy c-means, Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology, (2015), 1571-1577.
[37] V. Torra, S. Miyamoto, A definition for I-fuzzy partition, Soft Computing, 15 (2011), 363-369.
[38] V. Torra, Y. Narukawa, On hesitant fuzzy sets and decision, IEEE International Conference on Fuzzy Systems, (2009), 1378-1382.
[39] J. Valente de Oliveira, W. Pedrycz, Advances in fuzzy clustering and its applications, Wiley, 2007.
[40] Y. K. Varshney, P. K. Muhuri, Q. M. Danish Lohani, PIFHC: The probabilistic intuitionistic fuzzy hierarchical clustering algorithm, Applied Soft Computing, 120 (2022), 108584.
[41] M. M. Xia, Z. S. Xu, Hesitant fuzzy information aggregation in decision making, International Journal of Approximate Reasoning, 52 (2011), 395-407.
[42] M. M. Xia, Z. S. Xu, N. Chen, Some hesitant fuzzy aggregation operators with their application in group decision making, Group Decision and Negotiation, 22 (2011), 259-279.
[43] H. J. Xing, M. H. Ha, Further improvements in feature-weighted fuzzy C-means, Information Sciences, 267 (2014), 1-15.
[44] Z. S. Xu, Intuitionistic fuzzy aggregation and clustering, Studies in Fuzziness and Soft Computing, Springer, 279 (2012), 1-284.
[45] Z. Xu, Hesitant fuzzy sets theory, Studies in Fuzziness and Soft Computing, 314 (2014), 474 pages.
[46] Z. S. Xu, M. M. Xia, Distance and similarity measures for hesitant fuzzy sets, Information Sciences, 181 (2011), 2128-2138.
[47] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
[48] D. Q. Zhang, S. C. Chen, Clustering incomplete data using kernel-based fuzzy C-means algorithm, Neural Processing Letters, 18 (2003), 155-162.
[49] Y. Zhao, G. Karypis, Evaluation of hierarchical clustering algorithms for document datasets, in Proceeding of 11th International Conference on Information and Knowledge Management, McLean, Virginia, USA, (2002), 515-524.