[1] H. A. S. Abujabal, M. Aslam, A. B. Thaheem, A representation of bounded commutative BCK-algebras, International Journal of Mathematics and Mathematical Sciences, 19(4) (1996), 733-736.
[2] R. Balbes, P. Dwinger, Distributive lattices, Columbia, Missouri: University of Missouri Press. XIII, 1974.
[3] L. P. Belluce, A. Di Nola, Commutative rings whose ideals form an MV-algebra, Mathematical Logic Quarterly, 55(5) (2009), 468-486.
[4] L. P. Belluce, A. Di Nola, E. Marchioni, Rings and Gödel algebras, Algebra University, 64(1-2) (2010), 103-116.
[5] R. L. Blair, Ideal lattices and the structure of rings, Transactions of the AMS - American Mathematical Society, 75 (1953), 136-153.
[6] K. Blount, C. Tsinakis, The structure of residuated lattices, International Journal of Algebra and Computation, 13(4) (2003), 437-461.
[7] D. Busneag, D. Piciu, Lectii de algebra, Ed. Universitaria, Craiova, 2002.
[8] I. Chajda, H. Länger, Commutative rings whose ideal lattices are complemented, Asian-European Journal of Mathematics, 3 (2019), DOI:10.1142/S1793557119500396.
[9] C. C. Chang, Algebraic analysis of many-valued logic, Transactions of the AMS - American Mathematical Society, 88 (1958), 467-490.
[10] R. Cignoli, I. M. L. D’Ottaviano, D. Mundici, Algebraic foundations of many-valued reasoning, Trends in LogicStudia Logica Library 7, Dordrecht: Kluwer Acad. Publ, 2000, DOI:10.1007/978-94-015-9480-6.
[11] R. P. Dilworth, Abstract residuation over lattices, Bulletin of the AMS - American Mathematical Society, 44 (1938), 262-268.
[12] C. Flaut, S. Hoskova-Mayerova, A. Borumand Saeid, R. Vasile, Wajsberg algebras of order n(n ≤ 9), Neural Computing and Applications, 32 (2020), 13301-13312.
[13] C. Flaut, R. Vasile, Wajsberg algebras arising from binary block codes, Soft Computing, 24 (2020), 6047-6058.
[14] J. M. Font, A. J. Rodriguez, A. Torrens, Wajsberg algebras, Stochastica, 8(1) (1984), 5-30.
[15] B. Van Gasse, G. Deschrijver, C. Cornelis, E. Kerre, Filters of residuated lattices and triangle algebras, Information Sciences, 180(16) (2010), 3006-3020.
[16] I. N. Hernstein, Topics in algebra, 2end edition, John Wiley and Son, New York, 1975. [17] U. Höhle, S. E. Rodabaugh, Mathematics of fuzzy sets: Logic, topology and measure theory, Springer, Berlin, 1999.
[18] A. Iorgulescu, Algebras of logic as BCK algebras, A.S.E., Bucharest, 2009.
[19] J. H. Lint, Introduction to coding theory, third edition, Graduate Texts in Mathematics, 86, Springer Verlag, Berlin, 1999.
[20] J. Meng, Y. B. Jun, BCK-algebras, Kyung Moon Sa Co. Seoul, Korea, 1994.
[21] D. Mundici, MV-algebras-a short tutorial, Department of Mathematics Ulisse Dini, University of Florence, 2007.
[22] D. Piciu, Algebras of fuzzy logic, Editura Universitaria, Craiova, 2007.
[23] S. V. Tchoffo Foka, M. Tonga, Rings and residuated lattices whose fuzzy ideals form a Boolean algebra, Soft Computing, 26 (2022), 535-539.
[24] E. Turunen, Mathematics behind fuzzy logic, Physica-Verlag Heidelberg, 1999.
[25] M. Ward, R. P. Dilworth, Residuated lattices, Transactions of the AMS - American Mathematical Society, 45 (1939), 335-354.