Quintuple intuitionistic fuzzy implications reasoning algorithms and application

Document Type : Research Paper

Authors

1 Key Laboratory of Oceanographic Big Data Mining and Application of Zhejiang Province, Zhoushan, 316022, China

2 School of Information and Engineering, Zhejiang Ocean University, Zhoushan, 316000, China

Abstract

Atanassov's intuitionistic fuzzy sets have succussed in the application of decision making, data mining, artificial intelligence, image processing, and so on. In these applications, intuitionistic fuzzy reasoning plays a crucial role. To improve the quality of intuitionistic fuzzy reasoning, this paper presents a quintuple intuitionistic fuzzy implication principle (QIIP) to resolve intuitionistic fuzzy
modus ponens (IFMP) and intuitionistic fuzzy modus tollens (IFMT) problems. The QIIP algorithms of IFMP and IFMT problems for intuitionistic R-implication, S-implication, and several fuzzy implications are represented. Moreover, we investigate the recovery property and continuity of QIIP algorithms for IFMP and IFMT.
Finally, an application example for medical diagnosis is implemented to illustrate our proposed approaches.

Keywords


[1] R. Alcantud, A. Z. Khameneh, A. Kilicman, Aggregation of infinite chains of intuitionistic fuzzy sets and their application to choices with temporal intuitionistic fuzzy information, Information Sciences, 514 (2020), 106-117.
[2] D. Arthur, S. Vassilvitskii, k-means++: The advantages of careful seeding, Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, USA, 2007.
[3] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
[4] K. T. Atanassov, Intuitionistic fuzzy sets, Springer, Heidelberg, 1999.
[5] K. T. Atanassov, Intuitionistic fuzzy implications and modus ponens, Academy of Sciences, 11(1) (2005), 1-5.
[6] K. T. Atanassov, Two variants of intuitionistic fuzzy propositional calculus, Preprint IM-MFAIS-5-88, Sofia, 1988, Reprinted: International Journal Bioautomat, 20(1) (2016), 17-26.
[7] K. T. Atanassov, G. Gargov, Interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 31(3) (1989), 343-349.
[8] K. T. Atanassov, S. Stoeva, Intuitionistic fuzzy sets, In Polish Symposium on Interval and Fuzzy Mathematics, Poznan, (1983), 23-26.
[9] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms, Plenum Press, New York, 1981.
[10] D. Cerna, A. Leitsch, G. Reis, S. Wolfsteiner, Ceres in intuitionistic logic, Annals of Pure and Applied Logic, 168 (2017), 1783-1836.
[11] S. M. Chen, S. H. Cheng, C. H. Chiou, Fuzzy multiattribute group decision making based on intuitionistic fuzzy sets and evidential reasoning methodology, Information Fusion, 27 (2016), 215-227.
[12] C. Cornelis, G. Deschrijver, E. E. Kerre, Implication in intuitionistic fuzzy and interval-valued fuzzy set theory:
Construction, classification, application, International Journal of Approximate Reasoning, 35(1) (2004), 55-95.
[13] G. Deschrijver, C. Cornelis, E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Transactions on Fuzzy Systems, 12(1) (2004), 45-61.
[14] P. Grzegorzewski, Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdoff metric, Fuzzy Sets and Systems, 148 (2004), 319-328.
[15] D. H. Hong, S. Y. Hwang, A note on the value similarity of fuzzy systems variables, Fuzzy Sets and Systems, 66 (1994), 383-386.
[16] J. H. Jin, M. F. Ye, W. Pedrycz, Quintuple implication principle on interval-valued intuitionistic fuzzy sets, Soft Computing, 28 (2020), 12091-12109.
[17] M. X. Luo, R. R. Zhao, A distance measure between intuitionistic fuzzy sets and its application in medical diagnosis, Artificial Intelligence in Medicine, 89 (2018), 34-39.
[18] M. X. Luo, X. L. Zhou, Interval-valued quintuple implication principle of fuzzy reasoning, International Journal of Approximate Reasoning, 84 (2017), 23-32.
[19] J. Macqueen, Some methods for classification and analysis of multivariate observations, Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, 1 (1967), 281-297.
[20] M. Mas, M. Monserrat, J. Torrens, E. Trillas, A survey on fuzzy implication functions, IEEE Transactions on Fuzzy Systems, 15(1) (2007), 1107-1121.
[21] R. E. Moore, R. B. Kearfott, M. J. Cloud, Introduction to interval analysis, SIAM, Philadelpha, 2009.
[22] R. H. S. Reiser, B. Bedregal, Interval-valued intuitionistic fuzzy implications-construction, properties and representability, Information Sciences, 248 (2013), 68-88.
[23] T. Tirupal, B. C. Mohan, S. S. Kumar, Multimodal medical image fusion based on Yager’s intuitionistic fuzzy sets, Iranian Journal of Fuzzy Systems, 16(1) (2019), 33-48.
[24] G. J. Wang, On the logic foundation of fuzzy reasoning, Information Science, 117(1-2) (1997), 47-88.
[25] L. A. Zadeh, Fuzzy sets, Information and Control, 8(3) (1965), 338-353.
[26] M. Zd´ımalov´a, T. Bohumel, K. Plach´a-Gregorovsk´a, P. Weismann, H. El Falougy, ˇ Graph cutting in image processing handling with biological data analysis, Advances in Intelligent Systems and Computing, 945 (2020), 203-216.
[27] M. Zd´ımalov´a, A. Chatterjee, M. Kop´ani, H. Svobodov´a, ˇ Using graphs in processing of light microscope medical images, Mechanisms and Machine Science, 107 (2022), 127-156.
[28] W. Y. Zeng, H. S. Cui, Y. Q. Liu, Q. Yin, Z. S. Xu, Novel distance measure between intuitionistic fuzzy sets and its application in pattern recognition, Iranian Journal of Fuzzy Systems, 19(3) (2022), 127-137.
[29] M. C. Zheng, Y. Liu, Multiple-rules reasoning based on triple I method on Atanassov’s intuitionistic fuzzy sets, International Journal of Approximate Reasoning, 113 (2019), 196-206.
[30] M. C. Zheng, Z. K. Shi, Y. Liu, Triple I method of approximate reasoning on Atanassov’s intuitionistic fuzzy sets, International Journal of Approximate Reasoning, 55(6) (2014), 1369-1382.
[31] B. K. Zhou, G. Q. Xu, S. J. Li, The quintuple implication principle of fuzzy reasoning, Information Sciences, 297 (2015), 202-215.