[1] G. Birkhoff, Lattice theory, American Mathematical Society Colloquium Publications, 1940.
[2] A. Clifford, Naturally totally ordered commutative semigroups, American Journal of Mathematics, 76 (1954), 631-646.
[3] A. Climescu, Sur l’´equation fonctionelle de l’associativit´e, Bulletin of Ecole Polytechnic Institute of Jassy, ´ 1 (1946), 211-224.
[4] S. Jenei, Structure of left-continuous triangular norms with strong induced negations (II). Rotation-annihilation construction, Journal of Applied Non-Classical Logics, 11 (2001), 351-366.
[5] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer Academic Publishers, Dordrecht, 2000.
[6] E. P. Klement, R. Mesiar, E. Pap, Triangular norms as ordinal sums of semigroups in the sense of A. H. Clifford, Semigroup Forum, 65 (2002), 71-82.
[7] M. Mas, S. Massanet, D. Ruiz-Aguilera, J. Torrens, A survey on the existing classes of uninorms, Journal of Intelligent and Fuzzy Systems, 29 (2015), 1021-1037.
[8] A. Mesiarov´a-Zem´ankov´a, Ordinal sum construction for uninorms and generalized uninorms, International Journal of Approximate Reasoning, 76 (2016), 1-17.
[9] A. Mesiarov´a-Zem´ankov´a, R. Mesiar, Y. Su, Ordinal sum constructions for aggregation functions on the real unit interval, Iranian Journal of Fuzzy Systems, 19(1) (2022), 83-96.
[10] Y. Su, F. Qin, B. Zhao, On the inner structure of uninorms with continuous underlying operators, Fuzzy Sets and Systems, 403 (2021), 1-9.
[11] Y. Su, W. Zong, A. Mesiarov´a-Zem´ankov´a, Constructing uninorms via ordinal sums in the sense of A. H. Clifford, Semigroup Forum, 105 (2022), 328-344.
[12] R. R. Yager, A. Rybalov, Uninorm aggregation operators, Fuzzy Sets and Systems, 80(1) (1996), 111-120.