[1] N. AlNuaimi, M. M. Masud, M. A. Serhani, N. Zaki, Streaming feature selection algorithms for big data: A survey, Applied Computing and Informatics, 18 (2022), 113-135.
[2] H. Bayati, M. B. Dowlatshahi, A. Hashemi, MSSL: A memetic-based sparse subspace learning algorithm for multilabel classification, International Journal of Machine Learning and Cybernetics, 13(11) (2022), 3607-3624.
[3] B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and Systems, 230 (2013), 119-141.
[4] F. Beiranvand, V. Mehrdad, M. B. Dowlatshahi, Unsupervised feature selection for image classification: A bipartite matching-based principal component analysis approach, Knowledge-Based Systems, 250 (2022), 109085. DOI: 10.1016/j.knosys.2022.109085.
[5] R. E. Bellman, L. A. Zadeh, Decision-making in a fuzzy environment, Management Science, 17 (1970), 141-164.
[6] V. Bolón-Canedo, A. Alonso-Betanzos, Ensembles for feature selection: A review and future trends, Information Fusion, 52 (2019), 1-12.
[7] G. Chandrashekar, F. Sahin, A survey on feature selection methods, Computers and Electrical Engineering, 40 (2014), 16-28.
[8] S. Chiaretti, X. Li, R. Gentleman, A. Vitale, M. Vignetti, F. Mandelli, J. Ritz, R. Foa, Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival, Blood, 103(7) (2004), 2771-2778.
[9] B. C. Christensen, E. A. Houseman, C. J. Marsit, S. Zheng, M. R. Wrensch, J. L. Wiemels, H. H. Nelson, M. R. Karagas, J. F. Padbury, R. Bueno, D. J. Sugarbaker, R. F. Yeh, J. K. Wiencke, K. T. Kelsey, Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CPG island context, PLOS Genetics, 5 (2009). DOI: 10.1371/journal.pgen.1000602.
[10] A. Dalvand, M. B. Dowlatshahi, A. Hashemi, SGFS: A semi-supervised graph-based feature selection algorithm based on the Page-Rank algorithm, 27th International Computer Conference, Computer Society of Iran (CSICC), Tehran, Iran, 2022.
[11] X. Deng, Y. Li, J. Weng, J. Zhang, Feature selection for text classification: A review, Multimedia Tools and Applications, 79 (2019), 3797-3816.
[12] P. Dhal, C. Azad, A comprehensive survey on feature selection in the various fields of machine learning, Applied Intelligence, 52 (2022), 4543-4581.
[13] L. Fei, Y. Deng, Multi-criteria decision making in Pythagorean fuzzy environment, Applied Intelligence, 50 (2020), 537-561.
[14] V. Feofanov, E. Devijver, M. R. Amini, Wrapper feature selection with partially labeled data, Applied Intelligence, 52 (2022), 12316-12329.
[15] M. Friedman, A comparison of alternative tests of significance for the problem of m rankings, The Annals of Mathematical Statistics, 11 (1940), 86-92.
[16] J. Guo, W. Zhu, Dependence guided unsupervised feature selection, 32nd AAAI Conference on Artificial Intelligence, 2018, 2018.
[17] K. Han, Y. Wang, C. Zhang, C. Li, C. Xu, Autoencoder inspired unsupervised feature selection, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2018.
[18] E. Hancer, B. Xue, M. Zhang, A survey on feature selection approaches for clustering, Artificial Intelligence Review, 53 (2020), 4519-4545.
[19] A. Hashemi, M. B. Dowlatshahi, H. Nezamabadi-pour, MGFS: A multi-label graph-based feature selection algorithm via Page-Rank centrality, Expert Systems with Applications, 142 (2020), 113024. DOI:10.1016/j.eswa.2019.113024.
[20] A. Hashemi, M. B. Dowlatshahi, H. Nezamabadi-pour, MFS-MCDM: Multi-label feature selection using multicriteria decision making, Knowledge-Based Systems, 206 (2020), 106365. DOI:10.1016/j.knosys.
2020.106365.
[21] A. Hashemi, M. B. Dowlatshahi, H. Nezamabadi-pour, Minimum redundancy maximum relevance ensemble feature selection: A bi-objective Pareto-based approach, Journal of Soft Computing and Information Technology, 50 (2021).
[22] A. Hashemi, M. B. Dowlatshahi, H. Nezamabadi-pour, A bipartite matching-based feature selection for multi-label learning, International Journal of Machine Learning and Cybernetics, 12 (2021), 459-475.
[23] A. Hashemi, M. B. Dowlatshahi, H. Nezamabadi-pour, A pareto-based ensemble of feature selection algorithms, Expert Systems with Applications, 180 (2021), 115130. DOI:10.1016/j.eswa.2021.115130.
[24] A. Hashemi, M. B. Dowlatshahi, H. Nezamabadi-pour, VMFS: A VIKOR-based multi-target feature selection, Expert Systems with Applications, 182 (2021), 115224. DOI:10.1016/j.eswa.2021.115224.
[25] A. Hashemi, M. B. Dowlatshahi, H. Nezamabadi-pour, Ensemble of feature selection algorithms: A multi-criteria decision-making approach, International Journal of Machine Learning and Cybernetics, 13 (2022), 49-69.
[26] A. Hashemi, M. Joodaki, N. Z. Joodaki, M. B. Dowlatshahi, Ant colony optimization equipped with an ensemble of heuristics through multi-criteria decision making: A case study in ensemble feature selection, Applied Soft Computing, 124 (2022), 109046. DOI:10.1016/j.asoc.2022.109046.
[27] A. Hashemi, M. R. Pajoohan, M. B. Dowlatshahi, Online streaming feature selection based on Sugeno fuzzy integral, 2022 9th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), IEEE, Bam, Iran, 2022.
[28] D. Huang, X. Cai, C. D. Wang, Unsupervised feature selection with multi-subspace randomization and collaboration, Knowledge-Based Systems, 182 (2019), 104856. DOI:10.1016/j.knosys.2019.07.027.
[29] C. Kahraman, S. C. Onar, B. Oztaysi, Fuzzy multicriteria decision-making: A literature review, International Journal of Computational Intelligence Systems, 8 (2015), 637-666.
[30] F. Karimi, M. B. Dowlatshahi, A. Hashemi, SemiACO: A semi-supervised feature selection based on ant colony optimization, Expert Systems with Applications, 214 (2023), 119130. DOI:10.1016/j.eswa.
2022.119130.
[31] J. Khan, J. S. Wei, M. Ringnér, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C. R. Antonescu, C. Peterson, P. S. Meltzer, Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks, Nature Medicine, 7 (2001), 1-7.
[32] X. Lin, J. Guan, B. Chen, Y. Zeng, Unsupervised feature selection via orthogonal basis clustering and local structure preserving, IEEE Transactions on Neural Networks and Learning Systems, 33(11) (2021), 6881-6892.
[33] M. Miri, M. B. Dowlatshahi, A. Hashemi, M. K. Rafsanjani, B. B. Gupta, W. Alhalabi, Ensemble feature selection for multilabel text classification: An intelligent order statistics approach, International Journal of Intelligent Systems, 37(12) (2022), 11319-11341.
[34] W. C. Mlambo, A survey and comparative study of filter and wrapper feature selection techniques, The International Journal Of Engineering And Science (IJES), 5 (2016), 57-67.
[35] S. Nădăban, S. Dzitac, I. Dzitac, Fuzzy TOPSIS: A general view, Procedia Computer Science, 91 (2016), 823-831.
[36] M. M. Salih, B. B. Zaidan, A. A. Zaidan, M. A. Ahmed, Survey on fuzzy TOPSIS state-of-the-art between 2007 and 2017, Computers and Operations Research, 104 (2009), 207-227.
[37] S. Solorio-Fernández, J. A. Carrasco-Ochoa, J. F. Martínez-Trinidad, A review of unsupervised feature selection methods, Artificial Intelligence Review, 53 (2020), 907-948.
[38] B. Venkatesh, J. Anuradha, A review of feature selection and its methods, Cybernetics and Information Technologies, 19 (2019), 3-26.
[39] M. West, C. Blanchette, H. Dressman, E. Huang, S. Ishida, R. Spang, H. Zuzan, J. A. Olson, J. R. Marks, J. R. Nevins, Predicting the clinical status of human breast cancer by using gene expression profiles, Proceedings of the National Academy of Sciences USA, 98(20) (2001), 11462-11467.
[40] J. Xie, M. Wang, S. Xu, Z. Huang, P. W. Grant, The unsupervised feature selection algorithms based on standard deviation and cosine similarity for genomic data analysis, Frontiers in Genetics, 12 (2021). DOI:10.3389/fgene.2021.684100.
[41] H. Zeng, Y. M. Cheung, Feature selection and kernel learning for local learning-based clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 1532-1547.
[42] L. Zhu, L. Miao, D. Zhang, Iterative Laplacian score for feature selection, Communications in Computer and Information Science, (2012), 80-87. DOI:10.1007/978-3-642-33506-8 11.
[43] P. Zhu, W. Zhu, W. Wang, W. Zuo, Q. Hu, Non-convex regularized self-representation for unsupervised feature selection, Image and Vision Computing, 60 (2017), 22-29.