[1] M. Aghamohagheghi, S. M. Hashemi, R. Tavakkoli-Moghaddam, An advanced decision support framework to assess sustainable transport projects using a new uncertainty modeling tool: Interval-valued Pythagorean trapezoidal fuzzy numbers, Iranian Journal of Fuzzy Systems, 18(1) (2021), 53-73.
[2] M. F. Ak, M. Gul, AHP–TOPSIS integration extended with Pythagorean fuzzy sets for information security risk analysis, Complex and Intelligent Systems, 5(2) (2019), 113-126.
[3] M. Akram, I. Ullah, T. Allahviranloo, S. A. Edalatpanah, Fully Pythagorean fuzzy linear programming problems with equality constraints, Computational and Applied Mathematics, 40(4) (2021), 1-20.
[4] M. Albing, Process capability analysis with focus on indices for one-sided specification limits, Doctoral Dissertation, Lule˚a University of Technology, 2006.
[5] T. T. Allen, Introduction to engineering statistics and six sigma: Statistical quality control and design of experiments and systems, Berlin/Heidelberg: Springer Science and Business Media, 2006.
[6] M. Aslam, M. Albassam, Inspection plan based on the process capability index using the neutrosophic statistical method, Mathematics, 7(7) (2019), 1-10.
[7] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1) (1986), 87-96.
[8] S. Aydin, C. Kahraman, M. Kabak, Development of harmonic aggregation operator with trapezoidal Pythagorean fuzzy numbers, Soft Computing, 24(15) (2020), 11791-11803.
[9] Y. Cao, Z. Wu, T. Liu, Z. Gao, J. Yang, Multivariate process capability evaluation of cloud manufacturing resource based on intuitionistic fuzzy set, The International Journal of Advanced Manufacturing Technology, 84(1-4) (2016), 227-237.
[10] S. M. Chen, T. M. Hung, What can fuzziness do for capability analysis based on fuzzy data, Scientia Iranica, 28(2) (2021), 1049-1064.
[11] E. Haktanr, C. Kahraman, Design for six sigma and process capability using penthagorean fuzzy sets, In Intelligent and Fuzzy Techniques: Smart and Innovative Solutions: Proceedings of the INFUS 2020 Conference, Istanbul, Turkey, July 2020.
[12] E. Haktanr, C. Kahraman, Process design and capability analysis using penthagorean fuzzy sets: Surgical mask production machines comparison, Journal of Intelligent and Fuzzy Systems, 42(1) (2022), 477-489.
[13] G. Hesamian, M. G. Akbari, A process capability index for normal random variable with intuitionistic fuzzy information, Operational Research, 21(2) (2021), 951-964.
[14] C. Kahraman, E. Boltürk, S. C. Onar, B. Oztaysi, Modeling humanoid robots facial expressions using Pythagorean fuzzy sets, Journal of Intelligent and Fuzzy Systems, 39(5) (2020), 6507-6515.
[15] C. Kahraman, A. Parchami, S. Cevik Onar, B. Oztaysi, Process capability analysis using intuitionistic fuzzy sets, Journal of Intelligent and Fuzzy Systems, 32(3) (2017), 1659-1671.
[16] V. E. Kane, Process capability indices, Journal of Quality Technology, 18(1) (1986), 41-52.
[17] İ. Kaya, M. Çolak, A literature review on fuzzy process capability analysis, Journal of Testing and Evaluation, 48(5) (2020), 3963-3985.
[18] İ. Kaya, C. Kahraman, A new perspective on fuzzy process capability indices: Robustness, Expert Systems with Applications, 37(6) (2010), 4593-4600.
[19] İ. Kaya, C. Kahraman, Fuzzy process capability indices with asymmetric tolerances, Expert Systems with Application, 38(12) (2011), 14882-14890.
[20] İ. Kaya, C. Kahraman, Process capability analyses based on fuzzy measurements and fuzzy control charts, Expert Systems with Application, 38(4) (2011), 3172-3184.
[21] S. Kotz, N. L. Johnson, Process capability indices-A review, 1992-2000, Journal of Quality Technology, 34(1) (2002), 2-19.
[22] R. Kumar, S. A. Edalatpanah, S. Jha, R. Singh, A Pythagorean fuzzy approach to the transportation problem, Complex and Intelligent Systems, 5(2) (2019), 255-263.
[23] A. Luqman, M. Akram, J. C. R. Alcantud, Digraph and matrix approach for risk evaluations under Pythagorean fuzzy information, Expert Systems with Applications, 170(1) (2021), 114518.
[24] D. C. Montgomery, Introduction to statistical quality control, Fifth Edition, John Wiley and Sons, 2005.
[25] A. Parchami, S. Ç. Onar, B. Öztayşi, K. Kahraman, Process capability analysis using interval type-2 fuzzy sets, International Journal of Computational Intelligence Systems, 10(1) (2017), 721-733.
[26] X. Peng, Y. Yang, Some results for Pythagorean fuzzy sets, International Journal of Intelligent Systems, 30(11) (2015), 1133-1160.
[27] L. J. Porter, J. S. Oakland, Process capability indices-an overview of theory and practice, Quality and Reliability Engineering International, 7(6) (1991), 437-448.
[28] P. Rani, A. R. Mishra, A. Mardani, An extended Pythagorean fuzzy complex proportional assessment approach with new entropy and score function: Application in pharmacological therapy selection for type 2 diabetes, Applied Soft Computing, 94 (2020), 106441.
[29] O. Senvar, C. Kahraman, Type-2 fuzzy process capability indices for non-normal processes, Journal of Intelligent and Fuzzy Systems, 27(2) (2014), 769-781.
[30] M. Shakeel, S. Abdullah, M. S. Ali Khan, K. Rahman, Averaging aggregation operators with interval Pythagorean trapezoidal fuzzy numbers and their application to group decision making, Punjab University Journal of Mathematics, 50(2) (2020), 147-170.
[31] M. Shakeel, S. Abdullah, M. Shahzad, N. Siddiqui, Geometric aggregation operators with interval-valued Pythagorean trapezoidal fuzzy numbers based on Einstein operations and their application in group decision making, International Journal of Machine Learning and Cybernetics, 10(10) (2019), 2867-2886.
[32] R. R. Yager, Pythagorean fuzzy subsets, in Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting, IFSA/NAFIPS 2013, Edmonton, AB, Canada, 2013.
[33] S. Yalçın, İ. Kaya, Design and analysis of process capability indices Cpm and Cpmk by neutrosophic sets, Iranian Journal of Fuzzy Systems, 19(1) (2022), 13-30.
[34] S. Yalçın, İ. Kaya, Analyzing of process capability indices based on neutrosophic sets, Computational and Applied Mathematics, 41 (2022), 287.
[35] S. Yalçın, İ. Kaya, Two-dimensional uncertainty analysis for Cp and Cpk process capability indices, 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), Sakheer, Bahrain, (2022), 419-423.
[36] S. Yalçın, İ. Kaya, Design and analysis of Cpm and Cpmk indices for uncertainty environment by using Pythagorean fuzzy sets, 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Tech[1]nologies (3ICT), Sakheer, Bahrain, (2022), 293-297.
[37] L. A. Zadeh, Fuzzy sets, Information and Control, 8(3) (1965), 338-353.
[38] X. Zhang, Z. Xu, Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets, International Journal of Intelligent Systems, 29(12) (2014), 1061-1078.