Some aspects on computation of scalar valued and fuzzy valued integrals over fuzzy domains

Document Type : Research Paper


1 Department of Mathematics, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran

2 CITMAga, 15782 Santiago de Compostela, Spain

3 Departamento de Estat\'{i}stica, An\'{a}lise Matem\'{a}tica e Optimizaci\'{o}n, Facultade de Matem\'aticas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain


In this note, we consider the problem of computing a scalar-valued, and also a fuzzy-valued integral over fuzzy spatial domains, which is useful, for instance, to calculate  fuzzy areas described by a certain property, allowing the density function to be variable, or evaluate magnitudes in the case where the field function is fuzzily known.


[1] Z. Akyurek, T. A. Yanar, A fuzzy-based tool for spatial reasoning: A case study on estimating forest fire risky areas, Proceedings of International Symposium on Spatio-temporal Modeling, Spatial Reasoning, Analysis, Data Mining and Data Fusion, ISPRS Archives - Volume XXXVI-2/W25,
(2005),  1-6.
[2] J. Aumann, Integrals of set-valued functions, Journal of Mathematical Analysis and Applications, 12(1965), 1-12.
[3] M. Boyland, J. Nelson, F. L.  Bunnell, R. G. D'Eon, An application of fuzzy set theory for seral-class constraints in forest planning models, Forest Ecology and Management, 223 (2006), 395-402.
[4] P. A. Burrough, Principles of geographical information systems for land resource assessment, Clarendon Press, Oxford, 1986.
[5] P. A. Burrough, Fuzzy mathematical methods for soil survey and land evaluation,  Journal of Soil Science, 40 (1989), 477-492.
[6] P. A. Burrough, A. U. Frank, Geographic objects with indeterminate boundaries, Taylor and Francis, London, 1996.
[7] P. A. Burrough, R. A. McDonnell,  Principles of geographical information systems, Oxford University Press, Oxford, 1998.
[8] P. Diamond, P. E. Kloeden, Metric spaces of fuzzy sets: Theory and applications,  World Scientific, Singapore, 1994.
[9] D. Dubois, H. Fargier, A. Rico,  Double Sugeno integrals and the commutation problem, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 27(2019), 1-38.
 [10] D. Dubois, H. Prade, Fuzzy sets and systems: Theory and application,  Academic Press, New York, 1980.
[11] M. Eshaghi Gordji, S. Abbaszadeh, C. Park, The Sugeno fuzzy integral of concave functions, Iranian Journal of Fuzzy Systems, 16(2) (2019), 197-204.
[12] M. H. Greve, M. B.  S∅rensen, Soil boundary fuzziness: Classification and representation in GIS, In Proceedings of the World Congress of Computers in Agriculture and Natural Resources, (2002),  325-331.
[13] G. Guerra, A. Fernando,  Resena "SIG: Sistemas de informacion geografica" de Javier Gutierrez Puebla y Michael Gould,  Geoenseñanza, 14 (2009), 151-154. Available at:
[14] J. Guti'errez Puebla, M. Gould, Sig: Sistemas de informacion Geografica, Sintesis, Madrid, 1994.
[15] R. Halas, R. Mesiar, J. Pocs, A new characterization of the discrete Sugeno integral, Information Fusion, 29 (2016), 84-86.
[16] R. Halas, R. Mesiar, J. Pocs, V. Torra, A note on some algebraic properties of discrete Sugeno integrals, Fuzzy Sets and Systems, 355 (2019), 110-120.
[17] B. Jiang, Visualisation of fuzzy boundaries of geographical objects, Cartography, 27(1998), 41-46.
[18] Z. Jingxiong, R. P. Kirby, A comparison of alternative criteria for defining fuzzy boundaries on fuzzy categorical maps,  Geo-Spatial Information Science,  3(2) (2000),  26-34.
[19] G. S. Lee, K. H. Lee,  Application of fuzzy representation of geographic boundary to the soil loss model, Hydrology and Earth System Sciences Discuss,  3 (2006), 115-133.
[20]- S. Leyk, N. Zimmermann, Improving land change detection based on uncertain survey maps using fuzzy sets, Landscape Ecology,  22 (2007), 257-272.
[21] B. Liu,  Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2(1) (2008), 3-16.
22] E. Pap, A. Iosif, A. Gavrilut¸, Integrability of an interval-valued multifunction with respect to an interval-valued set
multifunction, Iranian Journal of Fuzzy Systems, 15(3) (2018), 47-63.
[23] M. L. Puri, D. A. Ralescu, Fuzzy random variables, Journal of Mathematical Analysis and Applications, 114 (1986), 409-422.
[24] D. Ralescu, G. Adams, The fuzzy integral, Journal of Mathematical Analysis and Applications, 75 (1980), 562-570.
[25] H. Roman-Flores, Y. Chalco-Cano, Sugeno integral and geometric inequalities}, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 15 (2007),  1-11.
[26] H. Roman-Flores, A. Flores-Franulic, Y. Chalco-Cano, A Jensen type inequality for fuzzy integrals, Information Sciences, 177 (2007), 3192-3201.
[27] H. Roman-Flores, A. Flores-Franulic, Y. Chalco-Cano, A Hardy-type inequality for fuzzy integrals, Applied Mathematics and Computation, 204 (2008), 178-183.
[28] A. Seliga, Greedy decomposition integrals, Iranian Journal of Fuzzy Systems, 17(5) (2020), 23-28.
[29] M. J. Smith, M. F. Goodchild, P. A. Longley,  Geospatial analysis, a comprehensive guide to principles techniques and software tools, The Winchelsea Press, 6th Edition, (2018),
[30] M. Sugeno,Theory of fuzzy integrals and its applications, Ph.D. Thesis, Tokyo Institute of Technology, 1974.
[31] J. Verstraete, B. Van der Cruyssen, R. De Caluwe,  Assigning membership degrees to points of fuzzy boundaries, In:  Proceedings IEEE PeachFuzz 2000: 19th International Conference of the North American Fuzzy Information Processing Society, NAFIPS - Atlanta, Georgia, (2000), 444-447.
[32] Z.  Wang, G. Klir, Fuzzy measure theory, Plenum, New York, 1992.
[33] T. Yang, B. Hillier,  The fuzzy boundary: The spatial definition of urban areas, In: A. S. Kubat,  O. Ertekin, Y. I. Guney, E. Eyuboglu (eds.), 6th International Space Syntax Symposium, Istanbul Technical University, Turkey,  (2007), 16 pages.
[34] C. You, N. Xiang, Some properties of uncertain integral, Iranian Journal of Fuzzy Systems, 15(2) (2018), 133-142.
[35] L. A. Zadeh, Fuzzy sets,  Information and Control,  8 (1965), 338-353.