[1] R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Analysis, 72 (2010), 2859-2862.
[2] A. Ahmadian, S. Salahshour, D. Baleanu, H. Amirkhani, R. Yunus, Tau method for the numerical solution of a fuzzy fractional kinetic model and its application to the oil palm frond as a promising source of xy lose, Journal of Computational Physics, 294 (2015), 562-584.
[3] T. Allahviranloo, A. Armand, Z. Gouyandeh, Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, Journal of Intelligent and Fuzzy Systems, 26( 2014), 1481-1490.
[4] S. Arshad, On existence and uniqueness of solution of fuzzy fractional differential equations, Iranian Journal of Fuzzy Systems, 10 (2013), 137-151.
[5] J. P. Aubin, A. Cellina, Differential inclusions, Springer-Verlag, Berlin, 1984.
[6] J. P. Aubin, I. Ekeland, Applied nonlinear analysis, Wiley, New York, 1984.
[7]- Y. R. Bai, N. S. Papageorgiou, S. D. Zeng, A singular eigenvalue problem for the Dirichlet (p,q)-Laplacian, Mathematische Zeitschrift, 300 (2022), 325-345.
[8] C. Berge, Espaces topologique, Dunod, Paris, 1959.
[9] D. Bothe, Multivalued perturbations of m-accretive differential inclusions, Israel Journal of Mathematics, 108 (1998), 109-138.
[10] J. X. Cen, A. A. Khan, D. Motreanu, S. D. Zeng, Inverse problems for generalized quasi-variational inequalities with application to elliptic mixed boundary value systems, Inverse Problems, 38 (2022), 065006, 28 pages.
[11] S. S. Chang, Variational inequality and complementarity problem theory with applications, Shanghai Scientific and Technological Literature, Shanghai, 1991.
[12] S. S. Chang, G. M. Lee, B. S Lee, Vector quasivariational inequalities for fuzzy mappings (II), Fuzzy Sets and Systems, 102(1999), 333-344.
[13] S. S. Chang, L. A. Zadeh, On fuzzy mappings and control, IEEE Transactions on Systems, Man, and Cybernetics, 2(1972), 30-34.
[14] S. S. Chang, Y. G. Zhu, On variational inequalities for fuzzy mappings, Fuzzy Sets and Systems, 32 (1989), 359-367.
[15] X. J. Chen, Z. Y. Wang, Differential variational inequality approach to dynamic games with shared constraints, Mathematical Programming, 146 (2014), 379-408.
[16] K. Deimling, Multivalued differential equations, Walter de Gruyter, Berlin, 1992.
[17] Z. Denkowski, S. Migórski, N. S. Papageorgiou, An introduction to nonlinear analysis: Theory, Springer, New York, 2003.
[18] P. Diamond, P. Kloeden, Metric spaces of fuzzy sets: Theory and applications, World Scientific, Singapore, 1994.
[19] L. Edsberg, \textit{Introduction to computation and modeling for differential equations, John Wiley and Sons, 2015.
[20] K. Fan, \textit{A generalization of Tychonoffs fixed point theorem, Mathematische Annalen, 142 (1961), 305-310.
[21] T. L. Friesz, M. A. Rigdon, R. Mookherjee, Differential variational inequalities and shipper dynamic oligopolistic network competition, Transportation Research, Part B, 40 (2006), 480-503.
[22] R. Garrappa, On linear stability of predictor-corrector algorithms for fractional differential equations, International Journal of Computer Mathematics, 87(2010), 2281-2290.
[23] F. Guo, W. Li, Y. B. Xiao, S. Migórski, Stability analysis of partial differential variational inequalities in Banach spaces, Nonlinear Analysis Modeling and Control, 25 (2020), 69-83.
[24] J. Gwinner, On a new class of differential variational inequalities and a stability result, Mathematical Programming, 139(1-2) (2013), 205-221.
[25] R. B. Holmes, Geometric functional analysis and its application, Springer-Verlag, New York, 1975.
[26] S. C. Hu, N. S. Papageorgiou, Handbook of multivalued analysis, Vol. I. Theory, Kluwer Academic Publishers, Dordrecht, 1997.
[27] N. J. Huang, A new method for a class of nonlinear variational inequalities with fuzzy mappings, Applied Mathematics Letters, 10(6) (1997), 129-133.
[28] E. Hüllermeier, An approach to modelling and simulation of uncertain dynamical systems, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 5 (1997), 117-137.
[29] N. V. Hung, V. M. Tam, D. O'Regan, Existence of solutions for a new class of fuzzy differential inclusions with resolvent operators in Banach spaces, Computational and Applied Mathematics, 39 (2020), 42.
[30] N. V. Hung, V. M. Tam, N. H. Tuan, D. O'Regan, Regularized gap functions and error bounds for generalized mixed weak vector quasi variational inequality problems in fuzzy environments, Fuzzy Sets and Systems, 400 (2020), 162-176.
[31] N. V. Hung, V. M. Tam, Y. Zhou, A new class of strong mixed vector GQVIP-generalized quasi-variational inequality problems in fuzzy environment with regularized gap functions based error bounds, Journal of Computational and Applied Mathematics, 381 (2021), 113055.
[32] T. D. Ke, N. V. Loi, V. Obukhovskii, Decay solutions for a class of fractional differential variational inequalities, Fractional Calculus and Applied Analysis, 18 (2015), 531-553.
[33] M. F. Khan, S. Husain, S. Salahuddin, A fuzzy extension of generalized multivalued η-mixed vector variational-like inequalities on locally convex Hausdorff topological vector spaces, Bulletin of the Calcutta Mathematical Society, 100 (2008), 27-36.
[34] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
[35] V. Lakshmikantham, R. N. Mohapatra, Theory of fuzzy differential equations and inclusion, Taylor and Francis, London, 2003.
[36] W. Li, X. Wang, N. Huang, Differential inverse variational inequalities in finite dimensional spaces, Acta Mathematica Scientia, 35B (2015), 407-422.
[37] Z. H. Liu, S. Migórski, S. D. Zeng, Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces, Journal of Differential Equations, 263 (2017), 3989-4006.
[38] Z. H. Liu, D. Motreanu, S. D. Zeng, Generalized penalty and regularization method for differential variational-hemivariational inequalities, SIAM Journal on Optimization,31 (2021), 1158-1183.
[39] N. V. Loi, T. D. Ke, V. Obukhovskii, P. Zecca, Topological methods for some classes of differential variational inequalities, Journal of Nonlinear and Convex Analysis, 17 (2016), 403-419.
[40] S. Migórski, S. D. Zeng, Mixed variational inequalities driven by fractional evolutionary equations, Acta Mathematica Scientia, 39B (2019), 461-468.
[41] J. S. Pang, D. E. Stewart, Differential variational inequalities, Mathematical Programming, 113 (2008), 345-424.
[42] I. Podlubny, Fractional differential equations, Academic Press, New York, 1999.
[43] D. E. Stewart, Dynamics with inequalities: Impacts and hard constraints, Society for Industrial and Applied Mathematics, Philadelphia, 2011.
[44] V. M. Tam, N. V. Hung, D. O'Regan, An existence result for a new class of fuzzy fractional differential inclusions with Clarke's subdifferential via resolvent operators in Banach spaces, Fuzzy Sets and Systems, 443 (2022), 221-240.
[45] G. J. Tang, T. Zhao, Z. Wan, D. X. He, Existence results of a perturbed variational inequality with a fuzzy mapping, Fuzzy Sets and Systems, 331 (2018), 68-77.
[46] X. Wang, W. Li, X. S. Li, N. J. Huang, Stability for differential mixed variational inequalities, Optimization Letters, 8(6) (2014), 1873-1887.
[47] X. Wang, Y. W. Qi, C. Q. Tao, N. J. Huang, A class of differential fuzzy variational inequalities in finite-dimensional spaces, Optimization Letters, 11 (2017), 1593-1607.
[48] Z. B. Wu, C. Min, N. J. Huang, On a system of fuzzy fractional differential inclusions with projection operators, Fuzzy Sets and Systems, 347 (2018), 70-88.
[49] Z. B. Wu, X. Wang, N. J. Huang, T. Y. Wang, H. M. Wang, A new class of fuzzy fractional differential inclusions driven by variational inequalities, Fuzzy Sets and Systems, 419 (2021), 99-121.
[50] Z. B. Wu, X. Wang, N. J. Huang, Y. B. Xiao, G. H. Zhang, On a new system of fractional delay differential equations coupled with fuzzy variational inequalities, Fuzzy Sets and Systems, 436 (2022), 55-81.
[51] L. A. Zadeh, Fuzzy sets}, Information and Control, 8 (1965), 338-353.
[52] S. D. Zeng, Y. R. Bai, L. Gasinski, P. Winkert, Existence results for double phase implicit obstacle problems involving multivalued operators, Calculus of Variations and Partial Differential Equations, 59 (2020), 18 pages.
[53] S. D. Zeng, S. Mig\'orski, Z. H. Liu, Well-posedness, optimal control, and sensitivity analysis for a class of differential variational-hemivariational inequalities, SIAM Journal on Optimization, 31 (2021), 2829-2862.
[54] S. D. Zeng, V. D. Radulescu, P. Winkert, Double phase implicit obstacle problems with convection and multivalued mixed boundary value conditions, SIAM Journal on Mathematical Analysis, 54 (2022), 1898-1926.