[1] S. Abbasbandy, M. Otadi, M. Mosleh, Minimal solution of general dual fuzzy linear systems, Chaos, Solitons and
Fractals, 37 (2008), 1113-1124.
[2] T. Allahviranlo, A comment on fuzzy linear systems (Discussion), Fuzzy Sets and Systems, 140 (2003), 559.
[3] T. Allahviranlo, M. Ghanbari, A. A. Hosseinzadeh, E. Haghi, R. Nuraei, A note on fuzzy linear systems, Fuzzy
Sets and Systems, 177 (2011), 87-92.
[4] T. Allahviranlo, M. Ghanbari, On the algebraic solution of fuzzy linear systems based on interval theory, Applied
Mathematical Modelling, 36 (2012), 5360-5379.
[5] T. Allahviranlo, M. A. Kermani, Solution of a fuzzy system of linear equation, Applied Mathematics and Computation, 175 (2006), 519-531.
[6] B. Asady, S. Abbasbandy, M. Alavi, Fuzzy general linear systems, Applied Mathematics and Computation, 169
(2005), 34-40.
[7] A. Ben-Israel, T. N. E. Greville, Generalized inverses, theory and applications, Springer, New York, 2003.
[8] J. J. Buckley, Y. Qu, Solving systems of linear fuzzy equations, Fuzzy Sets and Systems, 43 (1991), 33-43.
[9] R. Das, F. Smarandache, B. C. Tripathy, Neutrosophic fuzzy matrices and some algebraic operation, Neutrosophic
Sets and Systems, 32 (2020), 401-409.
[10] D. Dubois, H. Prade (eds.), Fundamentals of fuzzy sets, The Handbooks of Fuzzy Sets Series, 1, Kluwer Academic
Publishers, Dordrecht, 2000.
[11] M. Friedman, M. Ming, A. Kandel, Fuzzy linear systems, Fuzzy Sets and Systems, 96 (1998), 201-209.
[12] M. Ghanbari, Fuzzy inclusion linear systems, Iranian Journal of Fuzzy Systems, 14(4) (2017), 117-137.
[13] M. Ghanbari, T. Allahviranloo, W. Pedrycz, A straightforward approach for solving dual fuzzy linear systems,
Fuzzy Sets and Systems, 435 (2022), 89-106.
[14] W. A. Lodwick, D. Dubois, Interval linear systems as a necessary step in fuzzy linear systems, Fuzzy Sets and
Systems, 281 (2015), 227-251.
[15] B. Mihailovi´c, V. Miler Jerkovi´c, B. Maleˇsevi´c, Solving fuzzy linear systems using a block representation of generalized inverses: The Moore-Penrose inverse, Fuzzy Sets and Systems, 353 (2018), 44-65.
[16] B. Mihailovi´c, V. Miler Jerkovi´c, B. Maleˇsevi´c, Solving fuzzy linear systems using a block representation of generalized inverses: The group inverse, Fuzzy Sets and Systems, 353 (2018), 66-85.
[17] V. Miler Jerkovi´c, B. Maleˇsevi´c, Block representation of generalized inverses of matrices, Proceedings of the fifth
Symposium “Mathematics and applications”, organized by Faculty of Mathematics, University of Belgrade and
Serbian Academy of Sciences and Arts, 1 (2014), 176-185, (available at
https://www.researchgate.net/).
[18] V. Miler Jerkovi´c, B. Mihailovi´c, B. Maleˇsevi´c, A new method for solving square fuzzy linear systems, In: J.
Kacprzyk, E. Szmidt, S. Zadrozny, K. Atanassov, M. Krawczak (eds.) Advances in Fuzzy Logic and Technology
2017. IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing, Springer, Cham., 642
(2017), 278-289.
[19] R. Penrose, A generalized inverses for matrices, Mathematical Proccedings of the Cambridge Philosophical Society,
51 (1955), 406-413.
[20] C. A. Rohde, Contribution of the theory, computation and application of generalized inverses (PhD dissertation), University of North Carolina at Releigh, 1964. (http://www.stat.ncsu.edu/information/library/mimeo.php / pdf
392.)